Publications by authors named "Elaine Leslie"

Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumor induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette subfamily C (ABCC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the glutathione (GSH) conjugate of the highly toxic monomethylarsonous acid (MMA), monomethylarsenic diglutathione [MMA(GS)], and the major human urinary arsenic metabolite dimethylarsinic acid (DMA).

View Article and Find Full Text PDF
Article Synopsis
  • GSTP1 is a versatile protein that helps protect cells from damaging substances, influences cell growth and death, and typically exists in the cytosol but can also associate with other cell compartments like the plasma membrane.
  • The study investigates how GSTP1 undergoes palmitoylation, a process where a fatty acid attaches to the protein, and whether this affects its location and function within cells.
  • Findings show that GSTP1 is modified by palmitate at multiple sites, including some non-Cys residues, and this modification allows it to exist in both membrane and cytosolic fractions, potentially impacting its various cellular roles.
View Article and Find Full Text PDF

Postpartum hemorrhage (PPH)-heavy bleeding following childbirth-is a leading cause of morbidity and mortality worldwide. PPH can affect individuals regardless of risks factors and its incidence has been increasing in high-income countries including the United States. The high incidence and severity of this childbirth complication has propelled research into advanced treatments and alternative solutions for patients facing PPH; however, the development of novel treatments is limited by the absence of a common, well-established and well-validated animal model of PPH.

View Article and Find Full Text PDF

Congenital myasthenic syndrome (CMS) is a heterogeneous condition associated with 34 different genes, including SLC5A7, which encodes the high-affinity choline transporter 1 (CHT1). CHT1 is expressed in presynaptic neurons of the neuromuscular junction where it uses the inward sodium gradient to reuptake choline. Biallelic CHT1 mutations often lead to neonatal lethality, and less commonly to non-lethal motor weakness and developmental delays.

View Article and Find Full Text PDF

Over the last decade, significant progress been made in elucidating the role of membrane transporters in altering drug disposition, with important toxicological consequences due to changes in localized concentrations of compounds. The topic of "Transporters and Toxicity" was recently highlighted as a scientific session at the International Transporter Consortium (ITC) Workshop 4 in 2021. The current white paper is not intended to be an extensive review on the topic of transporters and toxicity but an opportunity to highlight aspects of the role of transporters in various toxicities with clinically relevant implications as covered during the session.

View Article and Find Full Text PDF

Millions of people worldwide are exposed to unacceptable levels of arsenic, a proven human carcinogen, in drinking water. In animal models, arsenic and selenium are mutually protective through formation and biliary excretion of seleno-bis (S-glutathionyl) arsinium ion [(GS)AsSe]. Selenium-deficient humans living in arsenic-endemic regions are at increased risk of arsenic-induced diseases, and may benefit from selenium supplementation.

View Article and Find Full Text PDF

Acetaminophen (APAP)-related toxicity is caused by the formation of -acetyl -benzoquinone imine (NAPQI), a reactive metabolite able to covalently bind to protein thiols. A targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, using multiple reaction monitoring (MRM), was developed to measure APAP binding on selected target proteins, including glutathione -transferases (GSTs). In vitro incubations with CYP3A4 were performed to form APAP in the presence of different proteins, including four purified GST isozymes.

View Article and Find Full Text PDF

Over 200 million people worldwide are exposed to the human carcinogen, arsenic, in contaminated drinking water. In laboratory animals, arsenic and the essential trace element, selenium, can undergo mutual detoxification through the formation of the seleno-bis(S-glutathionyl) arsinium ion [(GS)AsSe], which undergoes biliary and fecal elimination. [(GS)AsSe], formed in animal red blood cells (RBCs), sequesters arsenic and selenium, and slows the distribution of both compounds to peripheral tissues susceptible to toxic effects.

View Article and Find Full Text PDF

Hundreds of millions of people worldwide are exposed to unacceptable levels of carcinogenic inorganic arsenic. Animal models have shown that selenium and arsenic are mutually protective through the formation and elimination of the seleno-bis(S-glutathionyl) arsinium ion [(GS)AsSe]. Consistent with this, human selenium deficiency in arsenic-endemic regions is associated with arsenic-induced disease, leading to the initiation of human selenium supplementation trials.

View Article and Find Full Text PDF

A subset of a larger and heterogeneous class of disorders, the congenital myasthenic syndromes (CMS) are caused by pathogenic variants in genes encoding proteins that support the integrity and function of the neuromuscular junction (NMJ). A central component of the NMJ is the sodium-dependent high-affinity choline transporter 1 (CHT1), a solute carrier protein (gene symbol SLC5A7), responsible for the reuptake of choline into nerve termini has recently been implicated as one of several autosomal recessive causes of CMS. We report the identification and functional characterization of a novel pathogenic variant in SLC5A7, c.

View Article and Find Full Text PDF

Many publications have investigated the ingestion and toxicity of metallic lead from hunting and the shooting sports. However, there is limited literature on toxicity associated with the ingestion of lead fishing weights, despite our knowledge of damage caused to many species from entanglement in lines, nets, and fish-hooks. This paper surveys current knowledge of species poisoned by ingestion of lead fishing gear and the types of gear that have been implicated.

View Article and Find Full Text PDF

Rationale: Acetaminophen (APAP) is a well-known analgesic, deemed a very safe over-the-counter medication. However, it is also the main cause of acute liver failure (ALF) in the Western world, via the formation of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), and its covalent attachment to liver proteins. The aim of this study was to develop a sensitive and robust quantitative assay to monitor APAP-protein binding to human serum albumin (HSA) in patient samples.

View Article and Find Full Text PDF

The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/) protects cells from arsenic (a proven human carcinogen) through the cellular efflux of arsenic triglutathione [As(GS)] and the diglutathione conjugate of monomethylarsonous acid [MMA(GS)]. Previously, differences in MRP1 phosphorylation (at Y920/S921) and -glycosylation (at N19/N23) were associated with marked differences in As(GS) transport kinetics between HEK293 and HeLa cell lines. In the current study, cell line differences in MRP1-mediated cellular protection and transport of other arsenic metabolites were explored.

View Article and Find Full Text PDF

Environmental contamination and human consumption of chickens could result in potential exposure to Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), an organic arsenical that has been used as a chicken feed additive in many countries. However, little is known about the metabolism of Roxarsone in humans. The objective of this research was to investigate the metabolism of Roxarsone in human liver cells and to identify new arsenic metabolites of toxicological significance.

View Article and Find Full Text PDF

Halobenzoquinones (HBQs) are frequently detected disinfection byproducts (DBPs) in treated water. Recent studies have demonstrated that HBQs are highly cytotoxic and capable of inducing the generation of reactive oxygen species (ROS) and depleting cellular glutathione (GSH). Multidrug resistance proteins (MRPs/ABCCs) are known to play a critical role in the elimination of numerous drugs, carcinogens, toxicants, and their conjugated metabolites.

View Article and Find Full Text PDF

Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems.

View Article and Find Full Text PDF

Roxarsone (Rox), an organoarsenic compound, served as a feed additive in the poultry industry for more than 60 years. Residual amounts of Rox present in chicken meat could give rise to potential human exposure to Rox. However, studies on the bioavailability of Rox in humans are scarce.

View Article and Find Full Text PDF

Broad inter-individual variation exists in susceptibility to arsenic-induced tumours, likely involving differences in the ability of individuals to eliminate this metalloid. We recently identified human multidrug resistance protein 4 (MRP4/ABCC4) as a novel pathway for the cellular export of dimethylarsinic acid (DMA), the major urinary arsenic metabolite in humans, and the diglutathione conjugate of the highly toxic monomethylarsonous acid [MMA(GS)]. These findings, together with the basolateral and apical membrane localization of MRP4 in hepatocytes and renal proximal tubule cells, respectively, suggest a role for MRP4 in the urinary elimination of hepatic arsenic metabolites.

View Article and Find Full Text PDF

The ATP-binding cassette (ABC) transporter multidrug resistance protein 1 (MRP1/ABCC1) is responsible for the cellular export of a chemically diverse array of xenobiotics and endogenous compounds. Arsenic, a human carcinogen, is a high-affinity MRP1 substrate as arsenic triglutathione [As(GS)3]. In this study, marked differences in As(GS)3 transport kinetics were observed between MRP1-enriched membrane vesicles prepared from human embryonic kidney 293 (HEK) (Km 3.

View Article and Find Full Text PDF

Background/aim: Acetaminophen (APAP) hepatotoxicity is related to the formation of N-acetyl-p-benzoquinone imine (NAPQI), which is detoxified through conjugation with reduced glutathione (GSH). Ophthalmic acid (OA) is an analogue of GSH in which cysteine is replaced with 2-aminobutyrate. Metabolomics studies of mice with APAP-induced acute liver failure (APAP-ALF) identified OA as a marker of oxidative stress and hepatic GSH consumption.

View Article and Find Full Text PDF

Arsenic is a proven human carcinogen and is associated with a myriad of other adverse health effects. This metalloid is methylated in human liver to monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)), dimethylarsinic acid (DMA(V)), and dimethylarsinous acid (DMA(III)) and eliminated predominantly in urine. Hepatic basolateral transport of arsenic species is ultimately critical for urinary elimination; however, these pathways are not fully elucidated in humans.

View Article and Find Full Text PDF

Hundreds of millions of people worldwide are exposed to unacceptable levels of arsenic in drinking water. This is a public health crisis because arsenic is a Group I (proven) human carcinogen. Human cells methylate arsenic to monomethylarsonous acid (MMA(III)), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)).

View Article and Find Full Text PDF

Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S.

View Article and Find Full Text PDF

Objective: To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure.

Design And Setting: A prospective observational study in two tertiary liver transplant units.

Patients: Eighty-eight patients with acetaminophen-induced acute liver failure were recruited.

View Article and Find Full Text PDF

Millions of people world-wide are chronically exposed to inorganic forms of the environmental toxicant arsenic in drinking water. This has led to a public health crisis because arsenic is a human carcinogen, and causes a myriad of other adverse health effects. In order to prevent and treat arsenic-induced toxicity it is critical to understand the cellular handling of this metalloid.

View Article and Find Full Text PDF