Publications by authors named "Elaine Irvine"

Inhibition of S6 kinase 1 (S6K1) extends lifespan and improves healthspan in mice, but the underlying mechanisms are unclear. Cellular senescence is a stable growth arrest accompanied by an inflammatory senescence-associated secretory phenotype (SASP). Cellular senescence and SASP-mediated chronic inflammation contribute to age-related pathology, but the specific role of S6K1 has not been determined.

View Article and Find Full Text PDF

We tracked the consequences of in utero protein restriction in mice throughout their development and life course using a luciferase-based allelic reporter of imprinted Cdkn1c. Exposure to gestational low-protein diet (LPD) results in the inappropriate expression of paternally inherited Cdkn1c in the brains of embryonic and juvenile mice. These animals were characterised by a developmental delay in motor skills, and by behavioural alterations indicative of reduced anxiety.

View Article and Find Full Text PDF

Purpose: There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls.

View Article and Find Full Text PDF

Positron emission tomography (PET) using the radiotracer [F]-FDOPA provides a tool for studying brain dopamine synthesis capacity in animals and humans. We have previously standardised a micro-PET methodology in mice by intravenously administering [F]-FDOPA via jugular vein cannulation and assessment of striatal dopamine synthesis capacity, indexed as the influx rate constant of [F]-FDOPA, using an extended graphical Patlak analysis with the cerebellum as a reference region. This enables a direct comparison between preclinical and clinical output values.

View Article and Find Full Text PDF

Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes.

View Article and Find Full Text PDF

Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons.

View Article and Find Full Text PDF

Senescence is a cellular stress response that results in the stable arrest of old, damaged or preneoplastic cells. Oncogene-induced senescence is tumor suppressive but can also exacerbate tumorigenesis through the secretion of pro-inflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed senolytics, have proved beneficial in animal models of many age-associated diseases.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal inherited autosomal dominant neurodegenerative disorder caused by an expansion in the number of CAG trinucleotide repeats in the huntingtin gene. The disease is characterized by motor, behavioural and cognitive symptoms for which at present there are no disease altering treatments. It has been shown that manipulating the mTOR (mammalian target of rapamycin) pathway using rapamycin or its analogue CCI-779 can improve the cellular and behavioural phenotypes of HD models.

View Article and Find Full Text PDF

Arcuate nucleus agouti-related peptide (AgRP) neurons play a central role in feeding and are under complex regulation by both homeostatic hormonal and nutrient signals and hypothalamic neuronal pathways. Feeding may also be influenced by environmental cues, sensory inputs, and other behaviors, implying the involvement of higher brain regions. However, whether such pathways modulate feeding through direct synaptic control of AgRP neuron activity is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Sympathetic nervous system and immune cell interactions are crucial for regulating metabolism, particularly how macrophages influence obesity through the activation of brown adipose tissue (BAT) and the "beiging" of white adipose tissue (WAT).
  • A new mouse model lacking Irs2 in specific immune cells showed resistance to obesity and better glucose control on a high-fat diet due to increased BAT activity and WAT beiging.
  • The study revealed that while macrophages don’t produce catecholamines, the Irs2-deficient mice had increased sympathetic nerve density and catecholamine levels in adipose tissue, suggesting a novel macrophage signaling pathway that could inform obesity treatments.
View Article and Find Full Text PDF

GABA neurons in the VTA and SNc play key roles in reward and aversion through their local inhibitory control of dopamine neuron activity and through long-range projections to several target regions including the nucleus accumbens. It is not clear whether some of these GABA neurons are dedicated local interneurons or if they all collateralize and send projections externally as well as making local synaptic connections. Testing between these possibilities has been challenging in the absence of interneuron-specific molecular markers.

View Article and Find Full Text PDF

Objective: Imprinted genes are crucial for the growth and development of fetal and juvenile mammals. Altered imprinted gene dosage causes a variety of human disorders, with growth and development during these crucial early stages strongly linked with future metabolic health in adulthood. Neuronatin (Nnat) is a paternally expressed imprinted gene found in neuroendocrine systems and white adipose tissue and is regulated by the diet and leptin.

View Article and Find Full Text PDF

Neuronatin (Nnat) is an imprinted gene implicated in human obesity and widely expressed in neuroendocrine and metabolic tissues in a hormone- and nutrient-sensitive manner. However, its molecular and cellular functions and precise role in organismal physiology remain only partly defined. Here we demonstrate that mice lacking Nnat globally or specifically in β cells display impaired glucose-stimulated insulin secretion leading to defective glucose handling under conditions of nutrient excess.

View Article and Find Full Text PDF

Salt intake is an essential dietary requirement, but excessive consumption is implicated in hypertension and associated conditions. Little is known about the neural circuit mechanisms that control motivation to consume salt, although the midbrain dopamine system, which plays a key role in other reward-related behaviors, has been implicated. We, therefore, examined the effects on salt consumption of either optogenetic excitation or chemogenetic inhibition of ventral tegmental area (VTA) dopamine neurons in male mice.

View Article and Find Full Text PDF

Feeding requires the integration of homeostatic drives with emotional states relevant to food procurement in potentially hostile environments. The ventromedial hypothalamus (VMH) regulates feeding and anxiety, but how these are controlled in a concerted manner remains unclear. Using pharmacogenetic, optogenetic, and calcium imaging approaches with a battery of behavioral assays, we demonstrate that VMH steroidogenic factor 1 (SF1) neurons constitute a nutritionally sensitive switch, modulating the competing motivations of feeding and avoidance of potentially dangerous environments.

View Article and Find Full Text PDF

Current therapies for Alzheimer's disease (AD) are symptomatic and do not target the underlying Aβ pathology and other important hallmarks including neuronal loss. PPARγ-coactivator-1α (PGC-1α) is a cofactor for transcription factors including the peroxisome proliferator-activated receptor-γ (PPARγ), and it is involved in the regulation of metabolic genes, oxidative phosphorylation, and mitochondrial biogenesis. We previously reported that PGC-1α also regulates the transcription of β-APP cleaving enzyme (BACE1), the main enzyme involved in Aβ generation, and its expression is decreased in AD patients.

View Article and Find Full Text PDF

Objective: We have previously described the generation of coxsackievirus and adenovirus receptor ( CAR)-targeted vector, and shown that intramuscular delivery in mouse leg muscles resulted in specific retrograde transduction of lumbar-motor neurons (MNs). Here, we utilized the CAR-targeted vector to investigate the in vivo neuroprotective effects of lentivirally expressed for inducing neuronal survival and ameliorating the neuropathology and behavioral phenotypes of the SOD1 mouse model of ALS.

Methods: We produced cell factories of expressing lentiviral vectors (LVs) bearing CAR or Vesicular Stomatitis Virus glycoprotein (VSV-G) on their surface so as to compare neuroprotection from MN transduced versus muscle transduced cells.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) signalling pathway plays a highly conserved role in aging; mice lacking ribosomal protein S6 kinase 1 (S6K1-/-) have extended lifespan and healthspan relative to wild type (WT) controls. Exactly how reduced mTOR signalling induces such effects is unclear, although preservation of stem cell function may be important. We show, using gene expression analyses, that there was a reduction in expression of cell cycle genes in young (12 week) and aged (80 week) S6K1-/- BM-derived c-Kit+ cells when compared to age-matched WT mice, suggesting that these cells are more quiescent in S6K1-/- mice.

View Article and Find Full Text PDF

Phosphorylation is a ubiquitous post-translational modification of proteins, and a known physiological regulator of K+ channel function. Phosphorylation of K()channels by kinases has long been presumed to regulate neuronal processing and behavior. Although circumstantial evidence has accumulated from behavioral studies of vertebrates and invertebrates, the contribution to memory of single phosphorylation sites on K+ channels has never been reported.

View Article and Find Full Text PDF

Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight.

View Article and Find Full Text PDF

Glycogen synthase kinase-3 (GSK3), particularly the isoform GSK3β, has been implicated in a wide range of physiological systems and neurological disorders including Alzheimer's Disease. However, the functional importance of GSK3α has been largely untested. The multifunctionality of GSK3 limits its potential as a drug target because of inevitable side effects.

View Article and Find Full Text PDF

The effect of peptide tyrosine-tyrosine (PYY) on feeding is well established but currently its role in glucose homeostasis is poorly defined. Here we show in mice, that intraperitoneal (ip) injection of PYY3-36 or Y2R agonist improves nutrient-stimulated glucose tolerance and enhances insulin secretion; an effect blocked by peripheral, but not central, Y2R antagonist administration. Studies on isolated mouse islets revealed no direct effect of PYY3-36 on insulin secretion.

View Article and Find Full Text PDF

Objective: Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2).

View Article and Find Full Text PDF