The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol.
View Article and Find Full Text PDFAutophagy is an important cell survival pathway which is up-regulated under stress conditions. It is a well regulated catabolic process and enables the cell to recycle its constituents and organelles for re-use. Autophagy has been implicated to play an important role in a variety of disorders such as cancer and protein aggregatory neurodegenerative diseases , Alzheimer's disease, Parkinson's disease and Huntington's disease.
View Article and Find Full Text PDFMultidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts.
View Article and Find Full Text PDFAutophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action.
View Article and Find Full Text PDFThiosemicarbazone chelators, including the 2'-benzoylpyridine thiosemicarbazones (BpT) class, show marked potential as anticancer agents. Importantly, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) has been investigated in >20 phase I and II clinical trials. However, side effects associated with 3-AP administration include methemoglobinemia.
View Article and Find Full Text PDFThiosemicarbazones are a group of compounds that have received comprehensive investigation as anticancer agents. The antitumor activity of the thiosemicarbazone, 3-amino-2-pyridinecarboxaldehyde thiosemicarbazone (3-AP; triapine), has been extensively assessed in more than 20 phase I and II clinical trials. These studies have demonstrated that 3-AP induces methemoglobin (metHb) formation and hypoxia in patients, limiting its usefulness.
View Article and Find Full Text PDF