Publications by authors named "Elaine Emmerson"

Langerhans cells (LCs) are distinct among phagocytes, functioning both as embryo-derived, tissue-resident macrophages in skin innervation and repair and as migrating professional antigen-presenting cells, a function classically assigned to dendritic cells (DCs). Here, we demonstrate that both intrinsic and extrinsic factors imprint this dual identity. Using ablation of embryo-derived LCs in the murine adult skin and tracking differentiation of incoming monocyte-derived replacements, we found intrinsic intraepidermal heterogeneity.

View Article and Find Full Text PDF

The salivary glands are often damaged during head and neck cancer radiotherapy. This results in chronic dry mouth, which adversely affects quality of life and for which there is no long-term cure. Mouse models of salivary gland injury are routinely used in regenerative research.

View Article and Find Full Text PDF

Salivary gland regeneration is a complex process involving intricate interactions among various cell types. Recent studies have shed light on the pivotal role played by macrophages in driving the regenerative response. However, our understanding of this critical role has primarily relied on static views obtained from fixed tissue biopsies.

View Article and Find Full Text PDF
Article Synopsis
  • Radiation treatment for head and neck cancer can hurt salivary glands, causing dry mouth and affecting health and quality of life.
  • Macrophages are important immune cells in these glands and might help with repair, but we don't fully understand how they work yet.
  • The study found different types of macrophages in salivary glands that change with age, and those linked to the gland's tissue are crucial for fixing damage and keeping saliva production normal after radiation treatment.
View Article and Find Full Text PDF

Increased cancer rates denote that one in two people will be diagnosed with cancer in their lifetime. Over 60% of cancer patients receive radiotherapy, either as a stand-alone treatment or in combination with other treatments such as chemotherapy and surgery. Whilst radiotherapy is effective in destroying cancer cells, it also causes subsequent damage to healthy cells and surrounding tissue due to alterations in the tumor microenvironment and an increase in reactive oxygen species (ROS).

View Article and Find Full Text PDF

Acinar cells are the principal secretory units of multiple exocrine organs. A single-cell, layered, lumenized acinus forms from a large cohort of epithelial progenitors that must initiate and coordinate three cellular programs of acinar specification, namely, lineage progression, secretion, and polarization. Despite this well-known outcome, the mechanism(s) that regulate these complex programs are unknown.

View Article and Find Full Text PDF

Primary hypothyroidism severely impacts the quality of life of patients through a decrease in the production of the thyroid hormones T3 and T4, leading to symptoms affecting cardiovascular, neurological, cognitive, and metabolic function. The incidence rate of primary hypothyroidism is expected to increase in the near future, partially due to increasing survival of patients that have undergone radiotherapy for head and neck cancer, which induces this disease in over half of those treated. The current standard of care encompasses thyroid hormone replacement therapy, traditionally in the form of synthetic T4.

View Article and Find Full Text PDF

Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration.

View Article and Find Full Text PDF

Over the last decade, our understanding of the physiological role of senescent cells has drastically evolved, from merely indicators of cellular stress and ageing to having a central role in regeneration and repair. Increasingly, studies have identified senescent cells and the senescence-associated secretory phenotype (SASP) as being critical in the regenerative process following injury; however, the timing and context at which the senescence programme is activated can lead to distinct outcomes. For example, a transient induction of senescent cells followed by rapid clearance at the early stages following injury promotes repair, while the long-term accumulation of senescent cells impairs tissue function and can lead to organ failure.

View Article and Find Full Text PDF

Permanent damage to the salivary glands and resulting hyposalivation and xerostomia have a substantial impact on patient health, quality of life, and healthcare costs. Currently, patients rely on lifelong treatments that alleviate the symptoms, but no long-term restorative solutions exist. Recent advances in adult stem cell enrichment and transplantation, bioengineering, and gene transfer have proved successful in rescuing salivary gland function in a number of animal models that reflect human diseases and that result in hyposalivation and xerostomia.

View Article and Find Full Text PDF

The ductal system of the salivary gland has long been postulated to be resistant to radiation-induced damage, a common side effect incurred by head and neck cancer patients receiving radiotherapy. Yet, whether the ducts are capable of regenerating after genotoxic injury, or whether damage to ductal cells induces lineage plasticity, as has been reported in other organ systems, remains unknown. Here, using the murine salivary gland, we show that two ductal progenitor populations, marked exclusively by KRT14 and KIT, maintain non-overlapping ductal compartments after radiation exposure but do so through distinct cellular mechanisms.

View Article and Find Full Text PDF

Salivary glands are responsible for maintaining the health of the oral cavity and are routinely damaged by therapeutic radiation for head and neck cancer as well as by autoimmune diseases such as Sjögren's syndrome. Regenerative approaches based on the reactivation of endogenous stem cells or the transplant of exogenous stem cells hold substantial promise in restoring the structure and function of these organs to improve patient quality of life. However, these approaches have been hampered by a lack of knowledge on the identity of salivary stem cell populations and their regulators.

View Article and Find Full Text PDF

Salivary gland acinar cells are routinely destroyed during radiation treatment for head and neck cancer that results in a lifetime of hyposalivation and co-morbidities. A potential regenerative strategy for replacing injured tissue is the reactivation of endogenous stem cells by targeted therapeutics. However, the identity of these cells, whether they are capable of regenerating the tissue, and the mechanisms by which they are regulated are unknown.

View Article and Find Full Text PDF

Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) play crucial roles in maintaining tissue homeostasis during physiological turnovers and injuries. Very little is known about the phenotype, distribution and molecular nature of MSCs in freshly isolated human salivary glands (SGs) as most reports have focused on the analysis of cultured MSCs. Our results demonstrate that the cell adhesion molecule CD34 was widely expressed by the MSCs of human major SGs, namely parotid (PAG), sublingual (SLG) and submandibular (SMG) glands.

View Article and Find Full Text PDF

The tear-producing lacrimal gland is a tubular organ that protects and lubricates the ocular surface. The lacrimal gland possesses many features that make it an excellent model in which to investigate tubulogenesis, but the cell types and lineage relationships that drive lacrimal gland formation are unclear. Using single-cell sequencing and other molecular tools, we reveal novel cell identities and epithelial lineage dynamics that underlie lacrimal gland development.

View Article and Find Full Text PDF

Cutaneous nerves extend throughout the dermis and epidermis and control both the functional and reparative capacity of the skin. Denervation of the skin impairs cutaneous healing, presenting evidence that nerves provide cues essential for timely wound repair. Sebastian et al.

View Article and Find Full Text PDF

The lacrimal gland (LG) secretes aqueous tears necessary for maintaining the structure and function of the cornea, a transparent tissue essential for vision. In the human a single LG resides in the orbit above the lateral end of each eye delivering tears to the ocular surface through 3 - 5 ducts. The mouse has three pairs of major ocular glands, the most studied of which is the exorbital lacrimal gland (LG) located anterior and ventral to the ear.

View Article and Find Full Text PDF

A fundamental question in development is how cells assemble to form a tubular network during organ formation. In glandular organs, tubulogenesis is a multistep process requiring coordinated proliferation, polarization and reorganization of epithelial cells to form a lumen, and lumen expansion. Although it is clear that epithelial cells possess an intrinsic ability to organize into polarized structures, the mechanisms coordinating morphogenetic processes during tubulogenesis are poorly understood.

View Article and Find Full Text PDF

Efficient local monocyte/macrophage recruitment is critical for tissue repair. Recruited macrophages are polarized toward classical (proinflammatory) or alternative (prohealing) activation in response to cytokines, with tight temporal regulation crucial for efficient wound repair. Estrogen acts as a potent anti-inflammatory regulator of cutaneous healing.

View Article and Find Full Text PDF

Estrogen deprivation is associated with delayed healing, while Hormone Replacement Therapy (HRT) accelerates acute wound healing and protects against development of chronic wounds. Estrogen exerts its effects on healing via numerous cell types by signalling through the receptors ERα and ERβ, which bind to the Estrogen Responsive Element (ERE) and initiate gene transcription. The ERE-luciferase transgenic mouse model has been influential in assessing real-time in vivo estrogen receptor activation across a range of tissues and pathologies.

View Article and Find Full Text PDF

Although it is understood that endogenous IGF-1 is involved in the wound repair process, the effects of exogenous IGF-1 administration on wound repair remain largely unclear. In addition, the signaling links between IGF-1 receptor (IGF-1R) and estrogen receptors (ERs), which have been elucidated in other systems, have yet to be explored in the context of skin repair. In this study, we show that locally administered IGF-1 promotes wound repair in an estrogen-deprived animal model, the ovariectomized (Ovx) mouse, principally by dampening the local inflammatory response and promoting re-epithelialization.

View Article and Find Full Text PDF

The links between hormonal signalling and lifespan have been well documented in a range of model organisms. For example, in C. elegans or D.

View Article and Find Full Text PDF

Owing to its implication in a range of pathological conditions, including asthma, rheumatoid arthritis, atherosclerosis, inflammatory bowel disease and cancer, the pleiotropic cytokine macrophage migration inhibitory factor (MIF) has been the subject of intensive recent investigation. In the field of dermatology, MIF is believed to be a detrimental factor in diseases such as systemic sclerosis, atopic dermatitis, psoriasis, eczema and UV radiation damage. However, its contribution to other aspects of cutaneous biology is currently unclear.

View Article and Find Full Text PDF

Post-menopausal women have an increased risk of developing a number of degenerative pathological conditions, linked by the common theme of excessive inflammation. Systemic estrogen replacement (in the form of hormone replacement therapy) is able to accelerate healing of acute cutaneous wounds in elderly females, linked to its potent antiinflammatory activity. However, in contrast to many other age-associated pathologies, the detailed mechanisms through which estrogen modulates skin repair, particularly the cell type-specific role of the two estrogen receptors, ERalpha and ERbeta, has yet to be determined.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: