Publications by authors named "Elaine De Heuvel"

Objective: To determine the effects of exogenous glucagon-like peptide-2 (GLP-2), with or without massive distal bowel resection, on adaptation of jejunal mucosa, enteric neurons, gut hormones and tissue reserves in rats.

Background: GLP-2 is a gut hormone known to be trophic for small bowel mucosa, and to mimic intestinal adaptation in short bowel syndrome (SBS). However, the effects of exogenous GLP-2 and SBS on enteric neurons are unclear.

View Article and Find Full Text PDF

Background & Aims: Glucagon-like peptide 2 (GLP-2) analogues are approved for adults with intestinal failure (IF), but no studies have included infants. This study examined the pharmacokinetics (PK), safety, and nutritional effects of GLP-2 in infants with IF.

Methods: With parental consent (Health Canada Protocol:150,979), parenteral nutrition (PN)-dependent infants were treated with 5-20-μg/kg/day GLP-2 for 3days (phase 1), and if tolerated continued for 42days (phase 2).

View Article and Find Full Text PDF

Background And Aims: A glucagon-like peptide 2 (GLP-2) analogue is approved for adults with intestinal failure, but no studies of GLP-2 have included children. This study examined the pharmacokinetics, safety, and nutritional effects of GLP-2 in children with intestinal failure.

Methods: Native human GLP-2(1-33) was synthesized following good manufacturing practices.

View Article and Find Full Text PDF

Background: The enteroendocrine hormone glucagon like peptide-2 (GLP-2) and its ligands are under development as therapeutic agents for a variety of intestinal pathologies. A number of these conditions occur in neonates and infants, and thus a detailed understanding of the effects of GLP-2 during the phase of rapid growth during infancy is required to guide the development of therapeutic applications. We studied the effects of GLP-2 in the neonatal pig to determine the potential effects of exogenous administration.

View Article and Find Full Text PDF

Glucagon-like peptide 2 (GLP-2) is an enteroendocrine hormone trophic for intestinal mucosa; it has been shown to increase enteric neuronal expression of vasoactive intestinal polypeptide (VIP) in vivo. We hypothesized that GLP-2 would regulate VIP expression in enteric neurons via a phosphatidylinositol-3 kinase-γ (PI3Kγ) pathway. The mechanism of action of GLP-2 was investigated using primary cultures derived from the submucosal plexus (SMP) of the rat and mouse colon.

View Article and Find Full Text PDF

Purpose: The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome.

Methods: Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days.

View Article and Find Full Text PDF

Aftiphilin was identified through a database search for proteins containing binding motifs for the gamma-ear domain of clathrin adaptor protein 1 (AP-1). Here, we demonstrate that aftiphilin is expressed predominantly in brain where it is enriched on clathrin-coated vesicles. In addition to eight gamma-ear-binding motifs, aftiphilin contains two WXXF-acidic motifs that mediate binding to the alpha-ear of clathrin adaptor protein 2 (AP-2) and three FXXFXXF/L motifs that mediate binding to the alpha- and beta2-ear.

View Article and Find Full Text PDF

Enthoprotin, a newly identified component of clathrin-coated vesicles, interacts with the trans-Golgi network (TGN) clathrin adapters AP-1 and GGA2. Here we perform a multi-faceted analysis of the site in enthoprotin that is responsible for the binding to the gamma-adaptin ear (gamma-ear) domain of AP-1. Alanine scan mutagenesis and nuclear magnetic resonance (NMR) studies reveal the full extent of the site as well as critical residues for this interaction.

View Article and Find Full Text PDF

Despite numerous advances in the identification of the molecular machinery for clathrin-mediated budding at the plasma membrane, the mechanistic details of this process remain incomplete. Moreover, relatively little is known regarding the regulation of clathrin-mediated budding at other membrane systems. To address these issues, we have utilized the powerful new approach of subcellular proteomics to identify novel proteins present on highly enriched clathrin-coated vesicles (CCVs).

View Article and Find Full Text PDF