Publications by authors named "Elaine Cohen Hubal"

Per- and poly-fluoroalkyl substances (PFAS) are chemicals of concern-they are ubiquitous, persistent, with known and suspected health impacts. Well studied, primary sources of exposure to PFAS are drinking water and food. The presence of PFAS in human tissue of general populations suggests other important exposure sources/pathways.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) are widely used in consumer products and have been associated with adverse public health outcomes and significant economic costs. We developed a rapid chamber method for measuring EDC emissions from consumer products, significantly reducing the time to reach steady state from weeks or months to minutes or hours. Using this method, we quantified EDC emissions from a wide range of products, determined the emission-control parameters, and established their relationship with the EDC content () and physicochemical properties.

View Article and Find Full Text PDF

Per and polyfluoroalkyl substances (PFAS) are ubiquitous in the indoor environment, resulting in indoor exposure. However, a dearth of concurrent indoor multi-compartment PFAS measurements, including air, has limited our understanding of the contributions of each exposure pathway to residential PFAS exposure. As part of the Indoor PFAS Assessment (IPA) Campaign, we measured 35 neutral and ionic PFAS in air, settled dust, drinking water, clothing, and on surfaces in 11 North Carolina homes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the presence and distribution of per- and polyfluoroalkyl substances (PFAS) in North Carolina homes by measuring them in dust, airborne particles, dryer lint, and heating/air conditioning filters.
  • Fluorotelomer alcohols (FTOHs) were found to be the most prevalent PFAS in dust, dryer lint, and HAC filters, while perfluorooctane sulfonamidoethanols (FOSEs) were more dominant in airborne particles.
  • The research identifies that cloth, gas phase, and HAC filters act as major reservoirs for FTOHs, and provides estimates of the release rates of these substances from homes to the outside environment.
View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are prevalent in consumer products used indoors. However, few measurements of ionic PFAS exist for indoor air. We analyzed samples collected on PM quartz fiber filters (QFFs) in 11 North Carolina homes 1-3 times in living rooms (two QFFs in series), and immediately outside each home (single QFF), for 26 ionic PFAS as part of the 9 months Indoor PFAS Assessment (IPA) Campaign.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) are widely observed in environmental media and often are found in indoor environments as well as personal-care and consumer products. Humans may be exposed through water, food, indoor dust, air, and the use of PFAS-containing products. Information about relationships between PFAS exposure sources and pathways and the amounts found in human biomatrices can inform source-contribution assessments and provide targets for exposure reduction.

View Article and Find Full Text PDF

Background: Evidence suggests that clothing can influence human exposure to semi-volatile organic compounds (SVOCs) through transdermal uptake and inhalation.

Objectives: The objectives of this study were [1] to investigate the potential for clothing to function as a transport vector and secondary source of gas-phase SVOCs across indoor microenvironments, [2] to elucidate how clothing storage, wear, and laundering can influence the dynamics of transdermal uptake, and [3] to assess the potential for multiple human occupants to influence the multimedia dynamics of SVOCs indoors.

Methods: A computational modeling framework (ABICAM) was expanded, applied, and evaluated by simulating and augmenting two "real-world" chamber experiments.

View Article and Find Full Text PDF

Partitioning of per- and polyfluoroalkyl substances (PFAS) to indoor materials, including clothing, may prolong the residence time of PFAS indoors and contribute to exposure. During the Indoor PFAS Assessment (IPA) Campaign, we measured concentrations of nine neutral PFAS in air and cotton cloth in 11 homes in North Carolina, for up to 9 months. Fluorotelomer alcohols (i.

View Article and Find Full Text PDF

Decision makers in the Columbia River Basin (CRB) are currently challenged with identifying and characterizing the extent of per- and polyfluoroalkyl substances (PFAS) contamination and human exposure to PFAS. This work aims to develop and pilot a methodology to help decision makers target and prioritize sampling investigations and identify contaminated natural resources. Here we use random forest models to predict ∑PFAS in fish tissue; understanding PFAS levels in fish is particularly important in the CRB because fish can be a major component of tribal and indigenous people diet.

View Article and Find Full Text PDF

Given that human biomonitoring surveys show per- and polyfluoroalkyl substances (PFAS) to be ubiquitous, humans can be exposed to PFAS through various sources, including drinking water, food, and indoor environmental media. Data on the nature and level of PFAS in residential environments are required to identify important pathways for human exposure. This work investigated important pathways of exposure to PFAS by reviewing, curating, and mapping evidence for the measured occurrence of PFAS in exposure media.

View Article and Find Full Text PDF

Background: While major pathways of human PFAS exposure are thought to be drinking water and diet, other pathways and sources have also been shown to contribute to a person's cumulative exposure. However, the degree of contribution of these other sources to PFAS body burdens is still not well understood and occurrence data for PFAS in conssumer products and household materials are sparse. Questionnaire data concordant with biomonitoring may improve understanding of associations between other PFAS exposure pathways and exposure in human populations.

View Article and Find Full Text PDF

Background: Complex contributions of environment to health are intimately connected to human behavior. Modeling of human behaviors and their influences helps inform important policy decisions related to critical environmental and public health challenges. A typical approach to human behavior modeling involves generating daily schedules based on time-activity patterns of individual humans, simulating 'agents' with these schedules, and interpreting patterns of life that emerge from the simulation to inform a research question.

View Article and Find Full Text PDF

Evidence suggests that human exposure to airborne particles and associated contaminants, including respiratory pathogens, can persist beyond a single microenvironment. By accumulating such contaminants from air, clothing may function as a transport vector and source of "secondary exposure". To investigate this function, a novel microenvironmental exposure modeling framework (ABICAM) was developed.

View Article and Find Full Text PDF

1,4-Dioxane is a persistent and mobile organic chemical that has been found by the United States Environmental Protection Agency (USEPA) to be an unreasonable risk to human health in some occupational contexts. 1,4-Dioxane is released into the environment as industrial waste and occurs in some personal-care products as an unintended byproduct. However, limited exposure assessments have been conducted outside of an occupational context.

View Article and Find Full Text PDF

Background: Human exposure to per- and polyfluoroalkyl substances (PFAS) has been primarily attributed to contaminated food and drinking water. There is information indicating other sources and pathways of exposure in residential environments, but few studies report relationships between these indoor media and human biomonitoring measurements.

Methods: This study adapts existing systematic review tools and methodologies to synthesize evidence for PFAS exposure pathways from indoor environment media including consumer products, household articles, cleaning products, personal care products, and indoor air and dust.

View Article and Find Full Text PDF

Indoor environments have elevated concentrations of numerous semivolatile organic compounds (SVOCs). Textiles provide a large surface area for accumulating SVOCs, which can be transported to outdoors through washing. A multimedia model was developed to estimate advective transport rates (fluxes) of 14 SVOCs from indoors to outdoors by textile washing, ventilation, and dust removal/disposal.

View Article and Find Full Text PDF

Exposure to polychlorinated biphenyls (PCBs) can occur through multiple routes and sources, including dietary intake, inhalation, dermal contact, and ingestion of dust and soils. Dietary exposure to PCBs is often considered the primary exposure route for the general population; however, recent studies suggest an increasing contribution from indoor inhalation exposure. Here, we aim to estimate the relative contribution of different PCB exposure pathways for the general population, as well as for select age groups.

View Article and Find Full Text PDF

Systematic reviews are fast increasing in prevalence in the toxicology and environmental health literature. However, how well these complex research projects are being conducted and reported is unclear. Since editors have an essential role in ensuring the scientific quality of manuscripts being published in their journals, a workshop was convened where editors, systematic review practitioners, and research quality control experts could discuss what editors can do to ensure the systematic reviews they publish are of sufficient scientific quality.

View Article and Find Full Text PDF

Background: Human exposure to per- and polyfluoroalkyl substances (PFAS) has been primarily attributed to contaminated food and drinking water. However, additional PFAS exposure pathways have been raised by a limited number of studies reporting correlations between commercial and industrial products and PFAS levels in human media and biomonitoring. Systematic review (SR) methodologies have been widely used to evaluate similar questions using an unbiased approach in the fields of clinical medicine, epidemiology, and toxicology, but the deployment in exposure science is ongoing.

View Article and Find Full Text PDF

Increasing numbers of chemicals are on the market and present in consumer products. Emerging evidence on the relationship between environmental contributions and prevalent diseases suggests associations between early-life exposure to manufactured chemicals and a wide range of children's health outcomes. Using current assessment methodologies, public health and chemical management decisionmakers face challenges in evaluating and anticipating the potential impacts of exposure to chemicals on children's health in the broader context of their physical (built and natural) and social environments.

View Article and Find Full Text PDF

Empirical evidence suggests that human occupants indoors, through their presence and activities, can influence the dynamics of semivolatile organic compounds (SVOCs). To better understand these dynamics, a transient multimedia human exposure model was developed (Activity-Based Indoor Chemical Assessment Model (ABICAM)). This model parametrizes mass-balance equations as functions of time-dependent human activities.

View Article and Find Full Text PDF

Systematic review (SR) is a rigorous methodology applied to synthesize and evaluate a body of scientific evidence to answer a research or policy question. Effective use of systematic-review methodology enables use of research evidence by decision makers. In addition, as reliance on systematic reviews increases, the required standards for quality of evidence enhances the policy relevance of research.

View Article and Find Full Text PDF

In its 2014 report, A Framework Guide for the Selection of Chemical Alternatives, the National Academy of Sciences placed increased emphasis on comparative exposure assessment throughout the life cycle (i.e., from manufacturing to end-of-life) of a chemical.

View Article and Find Full Text PDF