Experimental elevation of intraocular pressure (IOP), a major glaucoma risk factor, has been a mainstay of research into mechanisms of glaucomatous optic nerve damage for decades. Methods that produce sustained IOP elevation can mimic the chronic nature of glaucoma and produce optic nerve damage. However, the pressure course for individual animals can be variable, unpredictably high at times, and difficult to monitor with current tonometry methods.
View Article and Find Full Text PDFOur purpose was to develop a protocol for prolonged anesthesia in mice and evaluate optic nerve axon injury in response to 4 h of controlled elevation of intraocular pressure (CEI). During CEI, C57BL/6 male mice (3-5 months old) were anesthetized with 1.5% isoflurane with 100% oxygen for 4 h and placed on a warm platform, with expired gas and anesthetic actively evacuated.
View Article and Find Full Text PDFPurpose: To clarify the optic nerve head (ONH) gene expression responses associated with a single, axon-damaging exposure to elevated IOP in relation to the composite cellular events previously identified in models of chronically elevated IOP.
Methods: Anesthetized rats were exposed unilaterally to an 8-hour pulse-train controlled elevation of IOP (PT-CEI) at 60 mm Hg, while others received normotensive CEI at 20 mm Hg. ONH RNA was harvested at 0 hours and 1, 2, 3, 7, and 10 days after either CEI and from naïve animals.
Purpose: We previously reported increased expression of cell proliferation and Jak-Stat pathway-related genes in chronic experimental glaucoma model optic nerve heads (ONH) with early, mild injury. Here, we confirm these observations by localizing, identifying, and quantifying ONH cellular proliferation and Jak-Stat pathway activation in this model.
Methods: Chronic intraocular pressure (IOP) elevation was achieved via outflow pathway sclerosis.
Purpose: Optic nerve head (ONH) astrocytes provide support for axons, but exhibit structural and functional changes (termed reactivity) in a number of glaucoma models. The purpose of this study was to determine if ONH astrocyte structural reactivity is axon-dependent.
Methods: Using rats, we combine retrobulbar optic nerve transection (ONT) with acute controlled elevation of intraocular pressure (CEI), to induce total optic nerve axon loss and ONH astrocyte reactivity, respectively.
Glaucoma is the leading cause of irreversible blindness and involves the death of retinal ganglion cells (RGCs). Although biomechanics likely contributes to axonal injury within the optic nerve head (ONH), leading to RGC death, the pathways by which this occurs are not well understood. While rat models of glaucoma are well-suited for mechanistic studies, the anatomy of the rat ONH is different from the human, and the resulting differences in biomechanics have not been characterized.
View Article and Find Full Text PDFSmall molecule delivery to the optic nerve would allow for exploration of molecular and cellular pathways involved in normal physiology and optic neuropathies such as glaucoma, and provide a tool for screening therapeutics in animal models. We report a novel surgical method for small molecule drug delivery to the optic nerve head (ONH) in a rodent model. In proof-of-principle experiments, we delivered cytochalasin D (Cyt D; a filamentous actin inhibitor) to the junction of the superior optic nerve and globe in rats to target the actin-rich astrocytic cytoskeleton of the ONH.
View Article and Find Full Text PDFUnderstanding the cellular pathways activated by elevated intraocular pressure (IOP) is crucial for the development of more effective glaucoma treatments. Microarray studies have previously been used to identify several key gene expression changes in early and extensively injured ONH, as well as in the retina. Limitations of microarrays include that they can only be used to detect transcripts that correspond to existing genomic sequencing information and their narrower dynamic range.
View Article and Find Full Text PDFMicroRNAs are small, endogenous noncoding RNAs that modulate post-transcriptional gene expression. Recent evidence suggests that they may have a potential role in the regulation of the complex biological responses that develop in response to elevated intraocular pressure. However, contemporary microRNA assay techniques (e.
View Article and Find Full Text PDFA reliable method of creating chronic elevation of intraocular pressure (IOP) in rodents is an important tool in reproducing and studying the mechanisms of optic nerve injury that occur in glaucoma. In addition, such a model could provide a valuable method for testing potential neuroprotective treatments. This paper outlines the basic methods for producing obstruction of aqueous humor outflow and IOP elevation by injecting hypertonic saline (a sclerosant) into the aqueous outflow pathway.
View Article and Find Full Text PDFPurpose: MicroRNAs (miRNAs) are small, endogenous noncoding RNAs that have been detected in human aqueous humor (AH). Prior studies have pooled samples to obtain sufficient quantities for analysis or used next-generation sequencing. Here, we used PCR arrays with preamplification to identify and compare miRNAs from individual AH samples between patients with primary open-angle glaucoma (POAG) and normal controls.
View Article and Find Full Text PDFPurpose: We determine if several hours of controlled elevation of IOP (CEI) will produce the optic nerve head (ONH) gene expression changes and optic nerve (ON) damage pattern associated with early experimental glaucoma in rats.
Methods: The anterior chambers of anesthetized rats were cannulated and connected to a reservoir to elevate IOP. Physiologic parameters were monitored.
Glaucomatous axon injury occurs at the level of the optic nerve head (ONH) in response to uncontrolled intraocular pressure (IOP). The temporal response of ONH astrocytes (glial cells responsible for axonal support) to elevated IOP remains unknown. Here, we evaluate the response of actin-based astrocyte extensions and integrin-based signaling within the ONH to 8 hours of IOP elevation in a rat model.
View Article and Find Full Text PDFPurpose: MicroRNAs are small, endogenous noncoding RNAs that modulate posttranscriptional gene expression. Although the contribution of microRNAs to the pathogenesis of glaucomatous damage is unknown, supporting evidence from central nervous system (CNS) research suggests they may play a role. It was therefore hypothesized that microRNAs known to be altered in CNS injury are also altered in experimental glaucoma.
View Article and Find Full Text PDFPurpose: To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG).
Methods: Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers.
Purpose: The cellular mechanisms linking elevated IOP with glaucomatous damage remain unresolved. Mechanical strains and short-term increases in IOP can trigger ATP release from retinal neurons and astrocytes, but the response to chronic IOP elevation is unknown. As excess extracellular ATP can increase inflammation and damage neurons, we asked if sustained IOP elevation was associated with a sustained increase in extracellular ATP in the posterior eye.
View Article and Find Full Text PDFThe purpose of this study is to three-dimensionally (3D) characterize the principal macroscopic and microscopic relationships within the rat optic nerve head (ONH) and quantify them in normal control eyes. Perfusion-fixed, trephinated ONH from 8 normal control eyes of 8 Brown Norway Rats were 3D histomorphometrically reconstructed, visualized, delineated and parameterized. The rat ONH consists of 2 scleral openings, (a superior neurovascular and inferior arterial) separated by a thin connective tissue strip we have termed the "scleral sling".
View Article and Find Full Text PDFInjection of hypertonic saline via episcleral veins toward the limbus in laboratory rats can produce elevated intraocular pressure (IOP) by sclerosis of aqueous humor outflow pathways. This article describes important anatomic characteristics of the rat optic nerve head (ONH) that make it an attractive animal model for human glaucoma, along with the anatomy of rat aqueous humor outflow on which this technique is based. The injection technique itself is also described, with the aid of a supplemental movie, including necessary equipment and specific tips to acquire this skill.
View Article and Find Full Text PDFBackground: Optineurin is a gene associated with normal tension glaucoma and amyotrophic lateral sclerosis. It has been reported previously that in cultured RGC5 cells, the turnover of endogenous optineurin involves mainly the ubiquitin-proteasome pathway (UPP). When optineurin is upregulated or mutated, the UPP function is compromised as evidenced by a decreased proteasome β5 subunit (PSMB5) level and autophagy is induced for clearance of the optineurin protein.
View Article and Find Full Text PDFPurpose: Optic nerve injury has been found to be dramatically reduced in a genetic mouse glaucoma model following exposure to sublethal, head-only irradiation. In this study, the same radiation treatment was used prior to experimental induction of elevated intraocular pressure (IOP) to determine if radiation is neuroprotective in another glaucoma model.
Methods: Episcleral vein injection of hypertonic saline was used to elevate IOP unilaterally in two groups of rats: (1) otherwise untreated and (2) radiation pretreated, n > 25/group.
Purpose: To determine if astrocyte processes label for actin and to quantify the orientation of astrocytic processes within the optic nerve head (ONH) in a rat glaucoma model.
Methods: Chronic intraocular pressure (IOP) elevation was produced by episcleral hypertonic saline injection and tissues were collected after 5 weeks. For comparison, eyes with optic nerve transection were collected at 2 weeks.
In this paper, we demonstrate the use of optical coherence tomography/optical microangiography (OCT/OMAG) to image and measure the effects of acute intraocular pressure (IOP) elevation on retinal, choroidal and optic nerve head (ONH) perfusion in the rat eye. In the experiments, IOP was elevated from 10 to 100 mmHg in 10 mmHg increments. At each IOP level, three-dimensional data volumes were captured using an ultrahigh sensitive (UHS) OMAG scanning protocol for 3D volumetric perfusion imaging, followed by repeated B-scans for Doppler OMAG analysis to determine blood flow velocity.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2011
Purpose: To identify patterns of early gene expression changes in the retinal ganglion cell layer (GCL) of a rodent model of chronic glaucoma.
Methods: Prolonged elevation of intraocular pressure (IOP) was produced in rats by episcleral vein injection of hypertonic saline (N = 30). GCLs isolated by laser capture microdissection were grouped by grading of the nerve injury (<25% axon degeneration for early injury; >25% for advanced injury).
Purpose: In glaucoma, the optic nerve head (ONH) is the principal site of initial axonal injury, and elevated intraocular pressure (IOP) is the predominant risk factor. However, the initial responses of the ONH to elevated IOP are unknown. Here the authors use a rat glaucoma model to characterize ONH gene expression changes associated with early optic nerve injury.
View Article and Find Full Text PDF