Publications by authors named "Elaine C Budreck"

Despite the pivotal functions of the NMDA receptor (NMDAR) for neural circuit development and synaptic plasticity, the molecular mechanisms underlying the dynamics of NMDAR trafficking are poorly understood. The cell adhesion molecule neuroligin-1 (NL1) modifies NMDAR-dependent synaptic transmission and synaptic plasticity, but it is unclear whether NL1 controls synaptic accumulation or function of the receptors. Here, we provide evidence that NL1 regulates the abundance of NMDARs at postsynaptic sites.

View Article and Find Full Text PDF

We created the Flexible Accelerated STOP Tetracycline Operator (tetO)-knockin (FAST) system, an efficient method for manipulating gene expression in vivo to rapidly screen animal models of disease. A single gene targeting event yields two distinct knockin mice-STOP-tetO and tetO knockin-that permit generation of multiple strains with variable expression patterns: 1) knockout, 2) Cre-mediated rescue, 3) tetracycline-controlled transcriptional activator (tTA)-mediated misexpression, 4) tetracycline-controlled transcriptional activator (tTA)-mediated overexpression, and 5) tetracycline-controlled transcriptional silencer (tTS)-mediated conditional knockout/knockdown. Using the FAST system, multiple gain-of-function and loss-of-function strains can therefore be generated on a time scale not previously achievable.

View Article and Find Full Text PDF

Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain.

View Article and Find Full Text PDF

Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1-4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown.

View Article and Find Full Text PDF

The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL.

View Article and Find Full Text PDF

Objective: We addressed the role of the low-density lipoprotein (LDL) receptor in determining clearance rates and production rate (PR) of apolipoprotein B (apoB) in humans.

Methods And Results: Kinetic studies using endogenous labeling of apoB with deuterated leucine were performed in 7 genetically defined patients with homozygous familial hypercholesterolemia (FH) and compared with 4 controls. The fractional catabolic rates (FCR) and PRs for apoB were determined by multicompartmental modeling.

View Article and Find Full Text PDF

Prolonged early-life seizures are considered potential risk factors for later epilepsy development, but mediators of this process remain largely unknown. Seizure-induced structural damage in hippocampus, including cell loss and mossy fiber sprouting, is thought to contribute to the hyperexcitability characterizing epilepsy, but a causative role has not been established. To determine whether early-life insults that lead to epilepsy result in similar structural changes, we subjected rat pups to lithium-pilocarpine-induced status epilepticus during postnatal development (day 20) and examined them as adults for the occurrence of spontaneous seizures and alterations in hippocampal morphology.

View Article and Find Full Text PDF