Publications by authors named "Elahinia M"

Background: Manually bent, standard-of-care, Ti-6Al-4V, mandibular graft fixation devices are associated with a significant post-operative failure rate. These failures require the patient to endure stressful and expensive re-operation. The approach recommended in this report demonstrates the optimization of graft fixation device mechanical properties via "stiffness-matching" by varying the fixation device's location, shape, and material composition through simulation of the device's post-operative performance.

View Article and Find Full Text PDF

This paper aims to review the State of the Art in metal self-expanding stents made from nitinol (NiTi), showing shape memory and superelastic behaviors, to identify the challenges and the opportunities for improving patient outcomes. A significant contribution of this paper is its extensive coverage of multidisciplinary aspects, including design, simulation, materials development, manufacturing, bio/hemocompatibility, biomechanics, biomimicry, patency, and testing methodologies. Additionally, the paper offers in-depth insights into the latest practices and emerging trends, with a special emphasis on the transformative potential of additive manufacturing techniques in the development of metal stents.

View Article and Find Full Text PDF

Additively manufactured medical devices require proper surface finishing before their use to remove partially adhered particles and provide adequate surface roughness. The literature widely investigates regular lattice structures-mainly scaffolds with small pores to enhance osseointegration; however, only a few studies have addressed the impact of surface finishing on the dimensional deviation and the global and local mechanical responses of lattice samples. Therefore, the current research investigates the impact of biomedical surface finishing (i.

View Article and Find Full Text PDF

Research into the processability of NiTiHf high-temperature shape memory alloys (HTSMAs) via laser powder bed fusion (LPBF) is limited; nevertheless, these alloys show promise for applications in extreme environments. This study aims to address this limitation by investigating the printability of four NiTiHf alloys with varying Hf content (1, 2, 15, and 20 at. %) to assess their suitability for LPBF applications.

View Article and Find Full Text PDF

Nickel-titanium (NiTi) alloys have shown promise for a variety of biomedical applications because of their unique properties of shape memory, superelasticity, and low modulus of elasticity (Young's modulus). Nevertheless, NiTi bulk components cannot be easily machined (e.g.

View Article and Find Full Text PDF

This review paper is related to the biomechanics of additively manufactured (AM) metallic scaffolds, in particular titanium alloy Ti6Al4V scaffolds. This is because Ti6Al4V has been identified as an ideal candidate for AM metallic scaffolds. The factors that affect the scaffold technology are the design, the material used to build the scaffold, and the fabrication process.

View Article and Find Full Text PDF

In this study, the effect of the addition of Hf on the oxidation behavior of NiTi alloy, which was processed using additive manufacturing and casting, is studied. Thermogravimetric analyses (TGA) were performed at the temperature of 500, 800, and 900 °C to assess the isothermal and dynamic oxidation behavior of the Ni50.4Ti29.

View Article and Find Full Text PDF

Nitinol has significant potential for biomedical and actuating-sensing devices, thanks to its functional properties. The use of selective laser melting (SLM) with Nitinol powder can promote novel applications aimed to produce 3D complex parts with integrated functional performances. As the final step of the production route, finishing processing needs to be investigated both for the optimization of the surface morphology and the limit alteration of the Nitinol functional properties.

View Article and Find Full Text PDF

While potentially strong enough for load-bearing skeletal reconstruction applications, the corrosion (biodegradation) rate of biocompatible Mg-Zn-Ca-based alloys still presents. The present work reports on the use of heat treatment (strengthening and resorption delaying) and micro arc oxidation (MAO) coating (corrosion delaying) processes which were developed to induce desirable corrosion rates which are essential to maintaining the mechanical integrity of Mg-Zn-Ca-based alloys during the bone healing period. Three Mg-x%Zn-0.

View Article and Find Full Text PDF

This special issue is dedicated to the simulation as well as experimental studies of biomechanical behavior of biomaterials, especially those that are used for bone implant applications [...

View Article and Find Full Text PDF

Shape memory alloys (SMAs) have found widespread applications as biomedical devices. Biocompatibility, corrosion resistance, and ductility make these alloys attractive for medical devices such as stents and filters. For these implants, the superelastic property is the primary function of SMAs.

View Article and Find Full Text PDF

Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and engineering applications due to their unique superelasticity and shape memory properties.

View Article and Find Full Text PDF

An effective radiotherapy treatment entails maximizing radiation dose to the tumor while sparing the surrounding and normal tissues. With the advent of SBRT with extreme hypo-fractionation in treating tumors including prostate where ablative dose is delivered in smaller number of fractions, rectum remains a dose-limiting organ and at the risk of rectal toxicity or secondary cancer. The same limitation of rectal toxicity exists for high-dose rate (HDR) treatments of cervical, endometrial, or prostate cancer when creating even a short distance between the anterior rectal wall and field of radiation is ideal in delivering ablative dose to the target.

View Article and Find Full Text PDF

Magnesium (Mg) and its alloys can degrade gradually up to complete dissolution in the physiological environment. This property makes these biomaterials appealing for different biomedical applications, such as bone implants. In order to qualify Mg and its alloys for bone implant applications, there is a need to precisely model their degradation (corrosion) behavior in the physiological environment.

View Article and Find Full Text PDF

Porous NiTi scaffolds display unique bone-like properties including low stiffness and superelastic behavior which makes them promising for biomedical applications. The present article focuses on the techniques to enhance superelasticity of porous NiTi structures. Selective Laser Melting (SLM) method was employed to fabricate the dense and porous (32-58%) NiTi parts.

View Article and Find Full Text PDF

Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy.

View Article and Find Full Text PDF

Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery.

View Article and Find Full Text PDF

In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person's daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties.

View Article and Find Full Text PDF

The current gold standard of care for mandibular segmental defeat reconstruction is the use of Ti-6Al-4V immobilization hardware and fibular double barrel graft. This method is often successful immediately at restoring mandible function, however the highly stiff fixation hardware causes stress shielding of the grafted bone and stress concentration in the fixation device over time which can lead to fixation device failure and revision surgery. The purpose of reconstructive surgery could be to create normal stress trajectories in the mandible following engraftment.

View Article and Find Full Text PDF

A detailed survey of the current trends and recent advances in rotary mechanical circulatory support systems is presented in this paper. Rather than clinical reports, the focus is on technological aspects of these rehabilitating devices as a reference for engineers and biomedical researchers. Existing trends in flow regimes, flow control, and bearing mechanisms are summarized.

View Article and Find Full Text PDF

Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression.

View Article and Find Full Text PDF

Mg-Zn-Ca alloys have grabbed most of the recent attention in research attempting to develop an Mg alloy for bone fixation devices due to their superior biocompatibility. However, early resorption and insufficient strength remain the main problems that hinder their use. Heat treatment has previously been thoroughly studied as a post-shaping process, especially after the fabrication of complex parts (e.

View Article and Find Full Text PDF

Metallic alloys have been introduced as biodegradable metals for various biomedical applications over the last decade owing to their gradual corrosion in the body, biocompatibility and superior strength compared to biodegradable polymers. Mg alloys possess advantageous properties that make them the most extensively studied biodegradable metallic material for orthopedic applications such as their low density, modulus of elasticity, close to that of the bone, and resorbability. Early resorption (i.

View Article and Find Full Text PDF

Unlabelled: The aim of this study is to investigate the behavior of the healthy mandible under maximum molar bite force to demonstrate the problems associated with the current standard of care procedures for mandibular segmental defect reconstruction (ie, use of Ti-6Al-4V hardware and either a single- or double-barrel fibular graft). With current Ti-6Al-4V mandibular reconstruction hardware, there is a significant stiffness mismatch among the hardware, graft, and the remaining host anatomy. How the distribution of mechanical forces through the mandible is altered after a segmental bone loss and reconstruction is incompletely understood.

View Article and Find Full Text PDF

Knee-ankle-foot orthoses (KAFOs) are used to assist in ambulation. The purpose of this paper is to review existing KAFO designs which can be grouped into passive KAFOs, stance control (SC) KAFOs, and dynamic KAFOs. The conventional passive KAFOs do not provide any active control for knee motions.

View Article and Find Full Text PDF