The high infectivity of SARS-CoV-2 makes it essential to develop a rapid and accurate diagnostic test so that carriers can be isolated at an early stage. Viral RNA in nasopharyngeal samples by RT-PCR is currently considered the reference method although it is not recognized as a strong gold standard due to certain drawbacks. Here we develop a methodology combining the analysis of from human nasopharyngeal (NP) samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the use of machine learning (ML).
View Article and Find Full Text PDFMetal-doped gold clusters, mainly cages, are receiving rapidly increasing attention due to their tunable catalytic properties. Their synthesis is mostly based on complex procedures, including several steps. In this work, via adsorption of gold nanoparticles (AuNPs) from aqueous solution to MOF (metal organic frameworks) of M = Co, Cu, Ni, and Zn with various linkers the {AuNPs, MOF} composites were prepared.
View Article and Find Full Text PDFMultiple myeloma (MM) is a highly heterogeneous disease of malignant plasma cells. Diagnosis and monitoring of MM patients is based on bone marrow biopsies and detection of abnormal immunoglobulin in serum and/or urine. However, biopsies have a single-site bias; thus, new diagnostic tests and early detection strategies are needed.
View Article and Find Full Text PDFRationale: Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved.
Methods: LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra.
The stability of in vitro cell cultures is an important issue for any clinical, bio-industrial, or pharmacological use. Embryonic stem cells are pluripotent; consequently, they possess the ability to differentiate into all three germ layers and are inherently prone to respond to differentiation stimuli. However, long-term culture inevitably yields clones that are best adapted to the culture conditions, passaging regimes, or differentiation sensitivity.
View Article and Find Full Text PDFMethods for the rapid construction of new chemical motifs have the potential to accelerate the development of nanoscience. The synthesis of new chemical entities by laser ablation has been systematically demonstrated by using mixtures of gold and selenium. The compounds generated are detected by time-of-flight mass spectrometry and, for selected compounds, the structure is investigated by using density functional theory optimization.
View Article and Find Full Text PDFRationale: Although the structure of atomic switch Ge2Sb2Te5 (GST) thin films is well established, the composition of the clusters formed in the plasma plume during pulsed-laser deposition (PLD) is not known. Laser Desorption Ionization Time-of-Flight Mass Spectrometry (LDI-TOF MS) is an effective method for the generation and study of clusters formed by laser ablation of various solids and thus for determining their structural fragments.
Methods: LDI of bulk or PLD-deposited GST thin layers and of various precursors (Ge, Sb, Te, and Ge-Te or Sb-Te mixtures) using a nitrogen laser (337 nm) was applied while the mass spectra were recorded in positive and negative ion modes using a TOF mass spectrometer equipped with a reflectron while the stoichiometry of the clusters formed was determined via isotopic envelope analysis.
Rationale: Currently, a limited number of gold arsenides have been described, some of which have important industrial applications, Laser ablation synthesis (LAS) has been employed in an attempt to generate some novel gold arsenide compounds.
Methods: LAS of gold arsenides was performed using nano-gold (NG) and arsenic as precursors. The clusters formed during laser desorption ionisation (LDI) were analysed by mass spectrometry using a quadrupole ion trap and reflectron time-of-flight analyser to determine the stoichiometry.
Rationale: Only a few gold tellurides are known. However, Laser Ablation Synthesis (LAS) using Laser Desorption Ionisation (LDI) time-of-flight mass spectrometry (TOF MS) has high potential for the generation of new compounds.
Methods: LDI of nanogold-Te conjugate using a nitrogen laser 337 nm was applied while the mass spectra were recorded in positive and negative ion modes using a quadrupole ion trap-TOF mass spectrometer equipped with a reflectron.
Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc.
View Article and Find Full Text PDFRuthenium(II) complexes are of great interest as a new class of cancerostatics with advantages over classical platinum compounds including lower toxicity. The stability of the [RuClCp(mPTA)2](OSO2CF3)2 complex (I) (Cp cyclopentadienyl, mPTA N-methyl 1,3,5-triaza-7-phosphaadamantane) in aqueous solution was studied using spectrophotometry, matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) time-of-flight (TOF) mass spectrometry (MS). Spectrophotometry proves that at least three different reactions take place in water.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
June 2009
Thin films of AgSbS(2) are important for phase-change memory applications. This solid is deposited by various techniques, such as metal organic chemical vapour deposition or laser ablation deposition, and the structure of AgSbS(2)(s), as either amorphous or crystalline, is already well characterized. The pulsed laser ablation deposition (PLD) of solid AgSbS(2) is also used as a manufacturing process.
View Article and Find Full Text PDFDetonation nanodiamonds (NDs) were studied by time-of-flight mass spectrometry (TOF MS). The formation of singly charged carbon clusters, C(n) (+), with groups of clusters at n = 1-35, n approximately 160-400 and clusters with n approximately 8000 was observed. On applying either high laser energy or ultrasound, the position and intensity of the maxima change and a new group of clusters at n approximately 70-80 is formed.
View Article and Find Full Text PDFLaser desorption/ionization (LDI) and/or laser ablation (LA) of selenium dioxide crystals or its mixtures with sodium peroxide were studied using a commercial matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. It was found that LDI and LA of selenium (IV) dioxide not only ionizes SeO(2), but also leads to the formation of several positively and negatively singly charged species: SeO(n) (+) (n = 0-2), Se(2) (+), SeO(n) (-) (n = 0-4), Se(2)O(n) (-) (n = 3-7), Se(3)O(n) (-) (n = 4-9), Se(4)O(n) (-) (n = 8-10). A rather high yield of selenium species in the positive ion mode, Se(m) (+) (m = 1-8) and Se(m)OH(+) (m = 3-7), was obtained by using the MALDI approach while the species detected in the negative ion mode, SeO(n) (-) (n = 0-4), Se(2)O(n) (-) (n = 3-7), Se(3)O(n) (-) (n = 4-9), and Se(4)O(n) (-) (n = 9, 10), were the same as those observed during LDI/LA of selenium dioxide.
View Article and Find Full Text PDFLaser desorption/ionisation and laser ablation of solid selenium trioxide, as well as the gas-phase behaviour of selenium trioxide, were studied. Selenium trioxide undergoes photochemical decomposition and, from the mass spectra obtained by laser desorption/ionisation time-of-flight mass spectrometry (LDI-TOF-MS), the following species were identified: O-, O2-, O3-, SeO-, SeO2-, SeO3-, SeO4-, Se2O7-, Se3O11-, and Se4O14-. Formation of the selenium superoxide SeO4- anion is described in this work for the first time.
View Article and Find Full Text PDF