The glass transition temperature is a key parameter of polymer coating layers that protect optical fibers, and it affects the proper function of the fibers in their service environment. Established protocols for glass transition temperature measurements are destructive, require samples of specific geometries, and may only be carried out offline. In this work, we report the nondestructive measurement of the glass transition temperature of an acrylate polymer coating layer over a working standard fiber.
View Article and Find Full Text PDFForward Brillouin scattering interactions support the sensing and analysis of media outside the cladding boundaries of standard fibers, where light cannot reach. Quantitative point-sensing based on this principle has yet to be reported. In this work, we report a forward Brillouin scattering point-sensor in a commercially available, off-the-shelf multi-core fiber.
View Article and Find Full Text PDFFibre lasers based on backward stimulated Brillouin scattering provide narrow linewidths and serve in signal processing and sensing applications. Stimulated Brillouin scattering in fibres takes place in the forward direction as well, with amplification bandwidths that are narrower by two orders of magnitude. However, forward Brillouin lasers have yet to be realized in any fibre platform.
View Article and Find Full Text PDFOpto-mechanical interactions in guided wave media are drawing great interest in fundamental research and applications. Forward stimulated Brillouin scattering, in particular, is widely investigated in optical fibres and photonic integrated circuits. In this work, we report a comprehensive study of forward stimulated Brillouin scattering over standard, panda-type polarization maintaining fibres.
View Article and Find Full Text PDF