Differential privacy (DP) defines privacy protection by promising quantified indistinguishability between individuals who consent to share their privacy-sensitive information and those who do not. DP aims to deliver this promise by including well-crafted elements of random noise in the published data, and thus there is an inherent tradeoff between the degree of privacy protection and the ability to utilize the protected data. Currently, several open-source tools have been proposed for DP provision.
View Article and Find Full Text PDF