Publications by authors named "Ela Smiljanic-Hurley"

Focussed studies on imidazopyridine inhibitors of Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG) have significantly advanced the series towards desirable in vitro property space. LLE-based approaches towards combining improvements in cell potency, key physicochemical parameters and structural novelty are described, and a structure-based design hypothesis relating to substituent regiochemistry has directed efforts towards key examples with well-balanced potency, ADME and kinase selectivity profiles.

View Article and Find Full Text PDF

Parkinson's disease is a relatively common neurological disorder with incidence increasing with age. Present treatments merely alleviate the symptoms and do not alter the course of the disease, thus identification of disease modifying therapies represents a significant unmet medical need. Mutations in the LRRK2 gene are risk-factors for developing PD and it has been hypothesized that the increased kinase activity of certain LRRK2 mutants are responsible for the damage of the dopaminergic neurons, thus LRRK2 inhibitors offer the potential to target an underlying cause of the disease.

View Article and Find Full Text PDF

Development of a class of bicyclic inhibitors of the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG), starting from known compounds with activity against a related parasite PKG orthologue, is reported. Examination of key sub-structural elements led to new compounds with good levels of inhibitory activity against the recombinant kinase and in vitro activity against the parasite. Key examples were shown to possess encouraging in vitro ADME properties, and computational analysis provided valuable insight into the origins of the observed activity profiles.

View Article and Find Full Text PDF

A series of trisubstituted thiazoles have been identified as potent inhibitors of Plasmodium falciparum (Pf) cGMP-dependent protein kinase (PfPKG) through template hopping from known Eimeria PKG (EtPKG) inhibitors. The thiazole series has yielded compounds with improved potency, kinase selectivity and good in vitro ADME properties. These compounds could be useful tools in the development of new anti-malarial drugs in the fight against drug resistant malaria.

View Article and Find Full Text PDF

To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC of 160 pM in a PfPKG kinase assay and inhibits P.

View Article and Find Full Text PDF

PfCDPK1 is a Plasmodium falciparum calcium-dependent protein kinase, which has been identified as a potential target for novel antimalarial chemotherapeutics. In order to further investigate the role of PfCDPK1, we established a high-throughput in vitro biochemical assay and used it to screen a library of over 35,000 small molecules. Five chemical series of inhibitors were initially identified from the screen, from which series 1 and 2 were selected for chemical optimization.

View Article and Find Full Text PDF

The structural diversity and SAR in a series of imidazopyridazine inhibitors of Plasmodium falciparum calcium dependent protein kinase 1 (PfCDPK1) has been explored and extended. The opportunity to further improve key ADME parameters by means of lowering logD was identified, and this was achieved by replacement of a six-membered (hetero)aromatic linker with a pyrazole. A short SAR study has delivered key examples with useful in vitro activity and ADME profiles, good selectivity against a human kinase panel and improved levels of lipophilic ligand efficiency.

View Article and Find Full Text PDF

The design, synthesis and structure-activity relationships of a novel series of 2,4-diamino-5-cyclopropyl pyrimidines is described. Starting from BX795, originally reported to be a potent inhibitor of PDK1, we have developed compounds with improved selectivity and drug-like properties. These compounds have been evaluated in a range of cellular and in vivo assays, enabling us to probe the putative role of the TBK1/IKKε pathway in inflammatory diseases.

View Article and Find Full Text PDF