Radiation therapy (RT) to the chest increases the patients' risk of cardiovascular disease (CVD). A complete understanding of the mechanisms by which RT induces CVD could lead to specific preventive, therapeutic approaches. It is becoming evident that both genotoxic chemotherapy agents and radiation induce mitochondrial dysfunction and cellular senescence.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is characterized by an immune-suppressive tumor microenvironment that renders it largely refractory to immunotherapy. We implemented a multimodal analysis approach to elucidate the immune landscape in PDA. Using a combination of CyTOF, single-cell RNA sequencing, and multiplex immunohistochemistry on patient tumors, matched blood, and non-malignant samples, we uncovered a complex network of immune-suppressive cellular interactions.
View Article and Find Full Text PDFAtherosclerosis is driven by multifaceted contributions of the immune system within the circulation and at vascular focal sites. However, specific characteristics of dysregulated immune cells within atherosclerotic lesions that lead to clinical events such as ischemic stroke or myocardial infarction are poorly understood. Here, using single-cell proteomic and transcriptomic analyses, we uncovered distinct features of both T cells and macrophages in carotid artery plaques of patients with clinically symptomatic disease (recent stroke or transient ischemic attack) compared to asymptomatic disease (no recent stroke).
View Article and Find Full Text PDFMass cytometry is a powerful tool for high-dimensional single cell characterization. Since the introduction of the first commercial CyTOF mass cytometer by DVS Sciences in 2009, mass cytometry technology has matured and become more widely utilized, with sequential platform upgrades designed to address specific limitations and to expand the capabilities of the platform. Fluidigm's third-generation Helios mass cytometer introduced a number of upgrades over the previous CyTOF2.
View Article and Find Full Text PDFLarge-scale immune monitoring experiments (such as clinical trials) are a promising direction for biomarker discovery and responder stratification in immunotherapy. Mass cytometry is one of the tools in the immune monitoring arsenal. We propose a standardized workflow for the acquisition and analysis of large-scale mass cytometry experiments.
View Article and Find Full Text PDFCRISPR pools are being widely employed to identify gene functions. However, current technology, which utilizes DNA as barcodes, permits limited phenotyping and bulk-cell resolution. To enable novel screening capabilities, we developed a barcoding system operating at the protein level.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes global epidemics of debilitating disease worldwide. To gain functional insight into the host cellular genes required for virus infection, we performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV Semi-supervised classification and clustering of single-cell events into 57 sub-communities of canonical leukocyte phenotypes revealed a monocyte-driven response to acute infection, with the greatest expansions in "intermediate" CD14CD16 monocytes and an activated subpopulation of CD14 monocytes. Increases in acute-phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells.
View Article and Find Full Text PDFHigh dimensional cytometry now allows measurement of over 50 parameters in a single sample, and is typically visualized using sophisticated dimensionality-reducing methods and analyzed with automated clustering algorithms. While these tools facilitate the identification and presentation of key findings, it remains challenging to effectively monitor and report the staining quality of individual markers. We present the Average Overlap Frequency (AOF), a simple and efficient metric to evaluate and quantify the robustness of staining and clustering quality in high-dimensional data.
View Article and Find Full Text PDFTo guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments.
View Article and Find Full Text PDFDespite recent advances in single-cell genomic, transcriptional, and mass-cytometric profiling, it remains a challenge to collect highly multiplexed measurements of secreted proteins from single cells for comprehensive analysis of functional states. Herein, we combine spatial and spectral encoding with polydimethylsiloxane (PDMS) microchambers for codetection of 42 immune effector proteins secreted from single cells, representing the highest multiplexing recorded to date for a single-cell secretion assay. Using this platform to profile differentiated macrophages stimulated with lipopolysaccharide (LPS), the ligand of Toll-like receptor 4 (TLR4), reveals previously unobserved deep functional heterogeneity and varying levels of pathogenic activation.
View Article and Find Full Text PDFTissue regeneration is an orchestrated progression of cells from an immature state to a mature one, conventionally represented as distinctive cell subsets. A continuum of transitional cell states exists between these discrete stages. We combine the depth of single-cell mass cytometry and an algorithm developed to leverage this continuum by aligning single cells of a given lineage onto a unified trajectory that accurately predicts the developmental path de novo.
View Article and Find Full Text PDFNew high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data.
View Article and Find Full Text PDFConsanguineous families affected with a recessive genetic disease caused by homozygotisation of a mutation offer a unique advantage for positional cloning of rare diseases. Homozygosity mapping of patient genotypes is a powerful technique for the identification of the genomic locus harbouring the causing mutation. This strategy relies on the observation that in these patients a large region spanning the disease locus is also homozygous with high probability.
View Article and Find Full Text PDFBioinformatics
October 2009
Motivation: The roughness of energy landscapes is a major obstacle to protein structure prediction, since it forces conformational searches to spend much time struggling to escape numerous traps. Specifically, beta-sheet formation is prone to stray, since many possible combinations of hydrogen bonds are dead ends in terms of beta-sheet assembly. It has been shown that cooperative terms for backbone hydrogen bonds ease this problem by augmenting hydrogen bond patterns that are consistent with beta sheets.
View Article and Find Full Text PDFRotatable torsion angles are the major degrees of freedom in proteins. Adjacent angles are highly correlated and energy terms that rely on these correlations are intensively used in molecular modeling. However, the utility of torsion based terms is not yet fully exploited.
View Article and Find Full Text PDF