Semen cryopreservation is an important tool that has massively contributed to the progression of animal reproduction, especially in cattle. Nonetheless, a large part of the sperm population suffers from cryostress and loses fertility during the process. Although bovine semen cryopreservation is more advanced than any other species, there are still some missing links in the technology knowledge.
View Article and Find Full Text PDFSperm rheotaxis refers to the ability of sperm cells to align their swimming direction with or against fluid flow. Positive rheotaxis (PR) is the tendency of sperm cells to swim against the flow. Herein, we describe sperm rheotaxis in fertile and infertile males, using a microfluidic platform and focus on rheotaxis as a potential marker of male fertility.
View Article and Find Full Text PDFA unique sperm behavior was observed in Egyptian chickens. Sperm showed a tendency to agglutinate forming motile thread-like bundles. Sperm agglutination behavior, kinematics, and some morphometric measures were studied in relation to sperm competition and fertility duration in Sharkasi and Dandarawi chickens.
View Article and Find Full Text PDFFertility in birds is dependent on their ability to store adequate populations of viable sperm for extended durations in sperm storage tubules (SSTs). The exact mechanisms by which sperm enter, reside, and egress from the SSTs are still controversial. Sharkasi chicken sperm showed a high tendency to agglutinate, forming motile thread-like bundles comprising many cells.
View Article and Find Full Text PDFReprod Domest Anim
November 2020
Rheotaxis of sperm using a microfluidic device was explored in human, mice and bull. However, the rheotaxis of ram sperm and its role in fertility are unknown. Herein, we described the sperm rheotaxis in ram using microfluidic devices and focused on rheotaxis as potential markers of in vivo fertility.
View Article and Find Full Text PDFThe aim of the present study was to investigate the effect of kisspeptin-10 (Kp10) injection on semen characteristics, testosterone (T) production and sperm rheotaxis using microfluidic devices in immature ram. Computer-assisted sperm analysis (CASA) with controlled flow velocity was used to explore the kinetic parameters of sperm and positive rheotaxis (PR %). PR % was defined as the number of PR sperms over the number of motile sperms.
View Article and Find Full Text PDFThe aim of the present research is to study the effect of pH values on the sperm rheotaxis properties. Semen collected from bulls was diluted with SOF medium (1:10). pH of the medium was adjusted using a digital pH meter to the following pH values: 6.
View Article and Find Full Text PDFTo improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor-9 (GDF-9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF-9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen-thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF-9.
View Article and Find Full Text PDFWe modified a previously reported computer-assisted sperm analysis (CASA) plugin for Image-J to enable analyzing motion of sperm cells in microfluidic environments. Microfluidics is increasingly being used in sperm-related applications such as sperm selection, IVF, and sperm motion behavior. Current CASA systems are not capable of analyzing motion of sperm cells in microfluidic devices where both sperm cells and the liquid itself are constantly moving, contrary to the conventional situation of sperm cells moving in a stationary liquid.
View Article and Find Full Text PDFWe study rheotaxis of bull sperm inside microchannels to characterize the effects of flow and wall shape on sperm swimming behavior. We found that a large percentage of sperm cells, 80 to 84%, exhibited positive rheotaxis (sperm cells swimming against the flow) within flow velocities of 33 to 134 μm s(-1). Sperm cells were also found to reverse their swimming direction when the liquid flow direction was reversed.
View Article and Find Full Text PDFThe objectives of this study were to investigate the ovarian follicular waves and their corresponding hormonal changes in she-camels and to elucidate blood perfusion of the ovarian structures. Three reproductively sound, non-pregnant female camels were examined daily using B-mode and color Doppler to detect changes in their ovarian structures and blood vasculature for 22 follicular waves. Blood area (BA) and percentage (BA%) were determined for the ovarian structures.
View Article and Find Full Text PDFIn this study we compared the effect of dinoprost and cloprostenol on changes of corpus luteum blood flow during luteolysis. Ten nonlactating cyclic ewes were synchronized with double PGF2α injections 11 days apart. At Day 10, the animals were classified into 2 groups and received the third dose of PGF2α after confirmation of the presence of a mature CL.
View Article and Find Full Text PDFThe aim of the present study was to examine the relation between follicular blood flow of the ovulatory follicle and the levels of serum E2 and nitric oxide (NO) in Ossimi ewe. Seven cyclic ewes were synchronized with a double injection PGF2α. The follicular wave was examined daily until ovulation (disappearance of the large dominant follicle ultrasonographically) with transrectal color Doppler ultrasonography (8-10MHz linear array transducer).
View Article and Find Full Text PDFThe objective of this study was to investigate the effect of the presence or absence of Corpus luteum (CL) on the follicular population during superstimulation in dairy cows (Holstein-Friesian cattle). Animals were divided into two groups as follows: (1) Growing CL group (G1): Cows (n=7) received a total dose of 28 Armour units (AU) follicle-stimulating hormone (FSH) through the first 4 d (twice daily) after spontaneous ovulation (Day 0). (2) CL Absence group (G2): Cows (n=10) received prostaglandin F(2alpha) (PGF(2alpha)) at 9 or 10 d after ovulation.
View Article and Find Full Text PDF