Studies of histone deacetylase (HDAC) inhibitors, novel anticancer drugs, in models of autoimmune diseases, asthma, and inflammatory bowel disease suggest that HDAC inhibitors may also have useful anti-inflammatory effects. Accordingly, in vitro studies relevant to asthma and inflammatory bowel disease were conducted using a selection of HDAC inhibitors: suberoylanilide hydroxamic acid (SAHA, Vorinostat), and a related branched hydroxamic acid, diamide (1), MGCD0103 and two short chain fatty acid derivatives: sodium butyrate (of use in inflammatory bowel disease) and sodium valproate. The ability of those HDAC inhibitors to modulate antigen- or agonist-induced contraction of isolated guinea pig tracheal rings and colon, agonist-induced contraction of rat colon, and histamine release from rat peritoneal mast cells was examined.
View Article and Find Full Text PDFOur previous studies on rat basophilic leukaemia (RBL-2H3) cells suggested that IK(Ca) channels similar to those in red blood cells (RBC) may be involved in the antigen-induced beta-hexosaminidase release. Since cetiedil blocks these channels in both cell types, we studied the inhibition by a selection of the synthetic analogues of cetiedil (UCL compounds) of antigen-induced beta-hexosaminidase release and 86Rb(+)-efflux from RBL-2H3 cells. We tested the (+)- and (-)-enantiomers of cetiedil (UCL 1348 and UCL 1349), the more lipophilic triphenylacetic acid derivatives (UCL 1495 and UCL 1617) and (9-benzyl-fluoren)-9-yl derivatives (UCL 1608 and UCL 1710).
View Article and Find Full Text PDFQuinidine and Ba(2+), non-selective K(+)-channel blockers, have previously been shown to inhibit antigen-induced mediator (beta-hexosaminidase) release from RBL-2H3 cells, a mucosal-type mast cell line. We therefore used selective blockers of Ca(2+)-activated and other K(+) channels to determine if there was a role for these channels in antigen-induced mediator release. Charybdotoxin and cetiedil dose-dependently inhibited beta-hexosaminidase release with IC(50) values of 133 nM and 84 microM, respectively.
View Article and Find Full Text PDF