Publications by authors named "El-Menyawy E"

An efficient approach for improving the photoelectrical conversion efficiency (PCE) of the bulk heterojunction (BHJ) solar cells, based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C butyric acidmethyl ester (PCBM), by incorporating PbSe nanorods decorated with graphene (G) into their active layer has been reported for the first time. Pristine PbSe and PbSe:G composites (with different amount of graphene) are synthesized via hydrothermal process and the formation mechanism is explained. The systematic investigation indicates that the crystallite size of PbSe:G increases with increasing graphene content.

View Article and Find Full Text PDF

ZnSe powder was prepared via hydrothermal technique using zinc acetate and sodium selenite as source materials. The prepared ZnSe powder was used for preparing film with different thickness values (95, 135 and 230 nm) via thermal evaporation technique. X-ray diffraction showed that the prepared powder has cubic zinc-blende structure with a space group, F43m.

View Article and Find Full Text PDF

2-(Antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) films were deposited via thermal evaporation technique. The optical properties of AHNA films and electrical characteristics of Au/AHNA/n-Si/Au heterojunction diode have been reported. The optical properties of AHNA films were investigated using the spectrophotometric measurements of optical transmittance and reflectance over spectral range 190-2500 nm.

View Article and Find Full Text PDF

In the present work, a combined experimental and computational study for the optimized molecular structural parameters, FT-IR spectra, thermo-chemical parameters, total dipole moment and HOMO-LUMO energy gap for N-(p-diethylaminobenzylidene)p-nitroaniline (DBN) have been investigated using B3LYP/6-311G basis set. Our calculated results have showed that the investigated compound possesses a dipole moment of 12 Debye and HOMO-LUMO energy gap of 2.94 eV which indicate high recommendations for photovoltaic devices fabrication.

View Article and Find Full Text PDF

3-Amino-2-(2-nitrophenyl)diazinyl-3-(morpholin-1-yl)acrylonitrile (ANMA) has been successfully synthesized via conventional solvent method, and its molecular structure has been identified by using various techniques including FTIR, (1)H NMR, MS and elemental analysis. The crystal structure of ANMA is characterized by single crystal X-ray crystallography. Crystallographic data revealed that the spatial structure of ANMA belongs to monoclinic, P21 a space group.

View Article and Find Full Text PDF

The optimized geometry and vibrational frequencies of 2-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitro-phenyl) acetonitrile (DOPNA) were obtained by ab initio DFT/B3LYP level with complete relaxation in the potential energy surface using 6-31G and 6-311G basis sets. The Fourier-transform infrared (FT-IR) spectrum of DOPNA has been recorded in the region 4000-400 cm(-1). The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum.

View Article and Find Full Text PDF