Publications by authors named "El-Meligy M"

In this study, the AlFeO@n-Pr@Et-SOH heterogeneous catalyst was successfully synthesized and utilized to produce biodiesel from oleic acid through an esterification process and to oxidize sulfides. To examine the physicochemical characteristics of the AlFeO@n-Pr@Et-SOH nanomaterial, a variety of advanced techniques were employed, including Fourier Transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), Elemental Mapping, Transmission electron microscopy (TEM), Inductively coupled plasma (ICP), and X-ray diffraction (XRD). The AlFeO@n-Pr@Et-SOH materials demonstrated excellent performance in both the esterification of oleic acid and the oxidation of sulfides.

View Article and Find Full Text PDF

Wireless sensor networks (WSNs) are important for applications like environmental monitoring and industrial automation. However, the limited energy resources of sensor nodes pose a significant challenge to the network's longevity. Energy imbalances among nodes often result in premature failures and reduced overall network lifespan.

View Article and Find Full Text PDF

Data security is becoming important as the amount of video data transmitted over the internet grows rapidly. This research article aims to maximize the security of transmitted video data by proposing a novel hybrid technique for video encryption and decryption. Elliptic Curve Cryptography (ECC) and the Modified Advanced Encryption Standard (MAES) are two encryption techniques that are included in the hybrid approach.

View Article and Find Full Text PDF

Hydrogen and renewable fuels were generated using cost-effective and efficient electrocatalysts for water splitting. In this work, a CuO-based photocathode is used for the water splitting to generate hydrogen energy by PVD technique. The XRD analysis reveals the deposition of CuO thin film on ITO substrates, which is monoclinic.

View Article and Find Full Text PDF

Improving the crystallinity of formamidinium triiodide (FAPbI) perovskite layer is one of the most effective approaches to increase the photovoltaic performance and stability of FAPbI-based solar cells (FSCs). In the current study, FAPbI layers were fabricated through a sequential deposition method. The morphology and crystalline properties of the FAPbI layers were modified by controlling the lead iodide (PbI) precursor by adding pyrrolidinium (Pyr) material into the PbI layer and modulating the FAPbI crystallization.

View Article and Find Full Text PDF

This article is devoted to the synthesis of a new magnetic palladium catalyst that has been immobilized on A-TT-Pd coated-magnetic FeO nanoparticles. Such surface functionalization of magnetic particles is a promising method to bridge the gap between heterogeneous and homogeneous catalysis approaches. The structure, morphology, and physicochemical properties of the particles were characterized through different analytical techniques, including TEM, FT-IR, XRD, SEM, EDS, TGA-DTG, ICP, and VSM techniques.

View Article and Find Full Text PDF

Background: The present study aimed to assess how a concentrated growth factor (CGF) injection affects the rate of orthodontic tooth movement in rabbits.

Methods: This experimental investigation employed a split-mouth configuration. Before orthodontic mesialization of the maxillary first molars, CGF was prepared and administered using submucosal injections on the buccal and palatal sides of the maxillary first molars in one randomly assigned quadrant.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in nanotechnology for nanomedicine show promise for enhancing cancer treatment through the use of innovative nanocomposite materials.
  • Metallic nanoparticles improve the delivery and release of anticancer drugs, reducing necessary dosages and minimizing harm to healthy cells.
  • Chitosan nanocomposites, especially when combined with gold and silver nanoparticles, offer improved stability and drug delivery capabilities, making them effective for targeting various anticancer drugs and enhancing therapeutic outcomes.
View Article and Find Full Text PDF

The creation and manipulation of synthetic images have evolved rapidly, causing serious concerns about their effects on society. Although there have been various attempts to identify deep fake videos, these approaches are not universal. Identifying these misleading deepfakes is the first step in preventing them from spreading on social media sites.

View Article and Find Full Text PDF

Statins have been long used in tissue engineering, besides their marketed hypolipidemic benefits. The aim of this research was to sustain the release of rosuvastatin calcium from bi-polymeric hydrogel scaffolds. A bi-polymer blend technique was used to enhance the mechanical properties of the fabricated hydrogels.

View Article and Find Full Text PDF

Bones are subject to different types of damages ranging from simple fatigue to profound defects. In serious cases, the endogenous healing mechanism is not capable of healing the damage or restoring the normal structure and function of the bony tissue. of this research was to achieve a sustained delivery of rosuvastatin and assess its efficacy in healing bone tissue damage.

View Article and Find Full Text PDF

Irregular growth of cells in the skull is recognized as a brain tumor that can have two types such as benign and malignant. There exist various methods which are used by oncologists to assess the existence of brain tumors such as blood tests or visual assessments. Moreover, the noninvasive magnetic resonance imaging (MRI) technique without ionizing radiation has been commonly utilized for diagnosis.

View Article and Find Full Text PDF

The present study aimed at preparing novel free-radical scavenging and water-soluble compounds derived from gelatin. Specifically, gelatin−syringaldehyde, gelatin−anisaldehyde, and gelatin−vanillin were synthesized and thoroughly studied for their physicochemical properties. In particular, the compounds were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy.

View Article and Find Full Text PDF

Bisphenol A (BPA) is one of the most common worldwide chemicals involved in the industry of polycarbonate plastics, medical devices, and pharmaceuticals. Forty three-month-old albino rats were randomly classified into four groups. Group Ӏ received a daily corn oil dose (5 mL/kg/ body weight, BW) through a gastric tube for one month, Group ӀӀ received a daily dose of Curcumin (200 mg/kg body weight (B.

View Article and Find Full Text PDF

Herein, wound dressing membranes based on covalently linked Chitosan (Ch) to Gelatin (GE) via Glutaraldehyde (GA) to have (Ch-GA-GE) copolymer have been developed. In addition, Anisaldehyde (An) was immobilized onto Ch-GA-GE to has An-(Ch-GA-GE) membrane. The changes of the Ch-GA-GE membranes wettability, from 26 ± 1.

View Article and Find Full Text PDF

To date, available review papers related to the electrospinning of biopolymers including polysaccharides for wound healing were focused on summarizing the process conditions for two candidates, namely chitosan and hyaluronic acid. However, most reviews lack the discussion of problems of hyaluronan and chitosan electrospun nanofibers for wound dressing applications. For this reason, it is required to update information by providing a comprehensive overview of all factors which may play a role in the electrospinning of hyaluronic acid and chitosan for applications of wound dressings.

View Article and Find Full Text PDF

Tissue regeneration is an auto-healing mechanism, initiating immediately following tissue damage to restore normal tissue structure and function. This falls in line with survival instinct being the most dominant instinct for any living organism. Nevertheless, the process is slow and not feasible in all tissues, which led to the emergence of tissue engineering (TE).

View Article and Find Full Text PDF

In the recent era, various diseases have severely affected the lifestyle of individuals, especially adults. Among these, bone diseases, including Knee Osteoarthritis (KOA), have a great impact on quality of life. KOA is a knee joint problem mainly produced due to decreased Articular Cartilage between femur and tibia bones, producing severe joint pain, effusion, joint movement constraints and gait anomalies.

View Article and Find Full Text PDF

Mercury (Hg) is one of the most toxic heavy metals and widely utilized in various industries. Hg exposure causes serious health impacts through unfavorable pathological and biochemical effects. We aimed to assess the effect of mercuric chloride (HgCl2) prenatal exposure on the lung development and probable prophylactic effect of vitamin C.

View Article and Find Full Text PDF

The goal of this research was to evaluate the beneficial effects of topical curcumin loaded freeze-dried wafers in wound healing. Curcumin wafers were fabricated by cross-linking of chitosan with beta glycerophosphate under magnetic stirring. Composite wafers were prepared by the addition of sodium hyaluronate.

View Article and Find Full Text PDF

Purpose: The goal was to directly deliver curcumin, a natural polyphenolic anticancer and anti-inflammatory compound, to the lung tissues with minimal systemic exposure through the fabrication of proliposomes, overcoming its poor aqueous solubility and oral bioavailability.

Methods: Nano-spray drying was employed to prepare proliposomes using hydroxypropyl beta-cyclodextrin as a carrier. Lecithin and cholesterol were used as lipids, stearylamine and Poloxamer 188 were added as positive charge inducer and a surfactant, respectively.

View Article and Find Full Text PDF

Chitosan/zeolite-A nanocomposite (CH/ZA) was synthesized as a potential carrier for levofloxacin (LVOX) of enhanced technical properties. The CH/ZA composite displayed enhanced loading capacity (425 mg/g) as compared to chitosan (188.8 mg/g) and zeolite-A (234.

View Article and Find Full Text PDF

The critical demand for eco-friendly, renewable, and safe energy resources is an essential issue encountered in the contemporary world. The catalytic transesterification of plant oils into biodiesel was assessed as promising a technique for providing new forms of clean and safe fuel. Natural clinoptilolite was doped with Na ions by green chemical reactions between sodium nitrite and green tea extract, producing a novel modified structure (Na/Clino).

View Article and Find Full Text PDF

The chitosan chains were integrated with MCM-48 mesoporous silica in an eco-friendly composite (CH/MCM-48) of enhanced adsorption capacity. The prepared CH/MCM-48 composite was applied in systematic retention of U (VI) as well as Sr (II) ions from water as the commonly detected radioactive pollutants. It displayed promising retention capacities of 261.

View Article and Find Full Text PDF

A CaO/clinoptilolite green nanocomposite (CaO/Clino) was synthesized by a green modification technique using calcium nitrate and green tea extract. The CaO/Clino nanocomposite promises a total basicity of 4.82 mmol OH/g, surface area of 252.

View Article and Find Full Text PDF