Objective: Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a systemic autoimmune disease in which glomerulonephritis is an important manifestation. Antibodies against myeloperoxidase (MPO) or proteinase 3 are thought to be important in pathogenesis. Phosphoinositide 3-kinase δ (PI3Kδ) mediates a number of effects in lymphocytes, but its role in myeloid cell responses is less clear.
View Article and Find Full Text PDFBackground: Anti-neutrophil cytoplasmic antibody vasculitis is characterized by antibodies to myeloperoxidase or proteinase 3. Previous work in murine anti-myeloperoxidase vasculitis has shown a role for the alternative pathway complement component factor B and the anaphylatoxin C5a. However, mice deficient in properdin, which stabilizes the alternative pathway convertase, were not protected.
View Article and Find Full Text PDFNephrology (Carlton)
February 2022
Aims: Rapidly progressive crescentic glomerulonephritis occurs in number systemic and primary glomerular diseases, including anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody vasculitis and lupus nephritis. Our understanding of pathogenic mechanisms comes from animal models of disease such as the nephrotoxic nephritis model. The lectin pathway of complement activation has been shown to play a key role in several models of inflammation including renal ischaemia reperfusion.
View Article and Find Full Text PDFV-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator of T cells. We assessed VISTA deficient mice in the murine nephrotoxic nephritis models of acute and chronic immune-complex mediated glomerulonephritis. We show that VISTA deficiency protects from crescentic glomerulonephritis, with no effect on the nephritogenic adaptive immune response.
View Article and Find Full Text PDFFibrocytes are myeloid lineage cells implicated in wound healing, repair, and fibrosis. We previously showed that fibrocytes are mobilized into the circulation after vascular injury, including the immune-mediated injury that occurs after allogeneic transplantation. A common response to inflammatory vascular injury is intimal hyperplasia (IH), which, alongside vascular remodeling, results in progressive loss of blood flow, downstream ischemia, and end-organ fibrosis.
View Article and Find Full Text PDFBackground: Tissue factor (TF) and coagulation proteases are involved in promoting atherosclerosis, but the molecular and cellular bases for their involvement are unknown.
Methods And Results: We generated a new strain (ApX4) of apolipoprotein E-deficient mice expressing a membrane-tethered human tissue factor pathway inhibitor fusion protein on smooth muscle actin-positive cells, including vascular smooth muscle cells (SMCs). ApX4 mice developed little atherosclerosis on either a normal chow or high-fat diet.
The precise function of tissue factor (TF) expressed by dendritic cells (DC) is uncertain. As well as initiating thrombin generation it can signal through protease-activated receptor 2 (PAR-2) when complexed with factor VIIa. We investigated the expression and function of TF on mouse bone marrow (BM) -derived DC; 20% of BM-derived DC expressed TF, which did not vary after incubation with lipopolysaccharide (LPS) or dexamethasone (DEX).
View Article and Find Full Text PDFObjective: The goal of this study was to use mice expressing human tissue factor pathway inhibitor (TFPI) on α-smooth muscle actin (α-SMA)(+) cells as recipients of allogeneic aortas to gain insights into the cellular mechanisms of intimal hyperplasia (IH).
Methods And Results: BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, indicating the phenotype of α-TFPI-Tg mice was due to these cells.
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells.
View Article and Find Full Text PDFInt J Biochem Cell Biol
February 2010
The related inflammatory cytokines, interleukin- (IL-) 1beta and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response.
View Article and Find Full Text PDFThe Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus.
View Article and Find Full Text PDFThe nuclear Dbf2-related protein kinases 1 and 2 (NDR1/2) are closely-related AGC family kinases that are strongly conserved through evolution. In mammals, they are activated inter alia by phosphorylation of an hydrophobic domain threonine-residue [NDR1(Thr-444)/NDR2(Thr-442)] by an extrinsic protein kinase followed by autophosphorylation of a catalytic domain serine-residue [NDR1(Ser-281)/NDR2(Ser-282)]. We examined NDR1/2 expression and regulation in primary cultures of neonatal rat cardiac myocytes and in perfused adult rat hearts.
View Article and Find Full Text PDFKrüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis.
View Article and Find Full Text PDF