Publications by authors named "El-Kattan A"

Brucellosis in dromedary camel bulls leads to either temporary or permanent loss of fertility. Camel brucellosis is associated with both orchitis and epididymitis. However, the clinical signs of camel brucellosis are not clear as those in cattle.

View Article and Find Full Text PDF
Article Synopsis
  • Trypanosomiasis causes tissue damage and triggers an immune response in camels, which can lead to metabolic and oxidative stress issues.
  • The study analyzed blood samples from 54 camels to compare immunological, antioxidant, and metabolic changes between healthy and infected groups, finding significant gene expression differences.
  • Results indicated specific up-regulation and down-regulation of genes related to immunity, metabolism, and antioxidants, along with changes in serum profiles that could help in managing trypanosomiasis in dromedary camels.
View Article and Find Full Text PDF

This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon.

View Article and Find Full Text PDF

Purpose: The key objective of this study was to formulate a local combined inactivated gel adjuvanted vaccine containing bovine viral diarrhea virus (BVDV)-1, BVDV-2 viruses and type A toxoid. The study evaluated its ability to enhance protective active immune response in camels' calves against these infectious pathogens under field conditions.

Materials And Methods: The local BVDV cytopathic strains and a local strain of toxigenic type A were used in vaccines formulation.

View Article and Find Full Text PDF

Background: Uranium mining and processing are an ancient occupation, recognized as being grueling and accountable for injury and disease. Uranium (U) is a radioactive heavy metal used in many industrial applications. It increases the micronuclei frequencies as well as chromosomal aberration and sister chromatid exchange in peripheral blood lymphocytes.

View Article and Find Full Text PDF

Arabic gum (, AG) is proven effective antioxidant and cytoprotective agent. The present study was designed to test this notion by investigating the possible role of AG against the radiographic contrast medium (Ioxitalamate, Telebrix-35, TBX)-induced oxidative stress and genotoxicity. Albino rats were divided into four groups and supplied with either; distilled water, daily 10% (/) AG, an intravenous dose of TBX (1600 mg I/kg b.

View Article and Find Full Text PDF

Preclinical and clinical data suggest that acetyl-CoA carboxylase (ACC) inhibitors have the potential to rebalance disordered lipid metabolism, leading to improvements in nonalcoholic steatohepatitis (NASH). Consistent with these observations, first-in-human clinical trials with our ACC inhibitor PF-05175157 led to robust reduction of de novo lipogenesis (DNL), albeit with concomitant reductions in platelet count, which were attributed to the inhibition of fatty acid synthesis within bone marrow. Herein, we describe the design, synthesis, and evaluation of carboxylic acid-based ACC inhibitors with organic anion transporting polypeptide (OATP) substrate properties, which facilitated selective distribution of the compounds at the therapeutic site of action (liver) relative to the periphery.

View Article and Find Full Text PDF

The extrapolation of oral bioavailability (F) information between dogs and humans has had an important role in the drug development process, whether it be to support an assessment of potential human pharmaceutical formulations or to identify the bioavailability challenges that may be encountered in dogs. Accordingly, these interspecies extrapolations could benefit from a tool that helps identify those drug characteristics consistent with species similarities in F. Our initial effort to find such a tool led to an exploration of species differences as it pertained to the biopharmaceutics classification system (BCS).

View Article and Find Full Text PDF

Background: Research about the effects of progesterone (P) and the relationship of P to oxidative stress has been achieved in ruminants but not enough in camels.

Aim: This study evaluated the effect of exogenous P hormone using CIDR for 7 days on blood concentrations of steroid hormones and oxidative status of dromedary she-camels during peak and low breeding seasons.

Materials And Methods: The present work was conducted on ten dark dromedary she-camels which were synchronized using a controlled internal drug release (CIDR) for 7 days as a reproductive management tool during peak breeding (November-April) and low breeding season (May-October).

View Article and Find Full Text PDF

Flaviviruses are (re)-emerging RNA viruses strictly dependent on lipid metabolism for infection. In the search for host targeting antivirals, we explored the effect of pharmacological modulation of fatty acid metabolism during flavivirus infection. Considering the central role of acetyl-Coenzyme A carboxylase (ACC) on fatty acid metabolism, we analyzed the effect of three small-molecule ACC inhibitors (PF-05175157, PF-05206574, and PF-06256254) on the infection of medically relevant flaviviruses, namely West Nile virus (WNV), dengue virus, and Zika virus.

View Article and Find Full Text PDF

Background: The aim of the study was to attempt to set average faciometric standards for Egyptians using the Kattan Facio-meter.

Material And Methods: The sample consisted of 180 faculty students with age range 17-25 years. It was divided into three groups; Angle Class I, II and III.

View Article and Find Full Text PDF

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously "undruggable" targets.

View Article and Find Full Text PDF

Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g.

View Article and Find Full Text PDF

Membrane transporters play an important role in the absorption, distribution, clearance, and elimination of drugs. Supported by the pharmacokinetics data in human, several transporters including organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, multidrug and toxin extrusion (MATE) proteins, P-glycoprotein and breast cancer resistance protein are suggested to be of clinical relevance. An early understanding of the transporter role in drug disposition and clearance allows reliable prediction/evaluation of pharmacokinetics and changes due to drug-drug interactions (DDIs) or genetic polymorphisms.

View Article and Find Full Text PDF

Understanding liver exposure of hepatic transporter substrates in clinical studies is often critical, as it typically governs pharmacodynamics, drug-drug interactions, and toxicity for certain drugs. However, this is a challenging task since there is currently no easy method to directly measure drug concentration in the human liver. Using bosentan as an example, we demonstrate a new approach to estimate liver exposure based on observed systemic pharmacokinetics from clinical studies using physiologically based pharmacokinetic modeling.

View Article and Find Full Text PDF

Membrane transporters play a key role in the absorption, distribution, clearance, elimination, and transport of drugs. Understanding the drug properties and structure activity relationships (SAR) for affinity to membrane transporters is critical to optimize clearance and pharmacokinetics during drug design. To facilitate the early identification of clearance mechanism, a framework named the extended clearance classification system (ECCS) was recently introduced.

View Article and Find Full Text PDF

Purpose: To assess the utility of Extended Clearance Classification System (ECCS) in understanding absorption, distribution, metabolism, and elimination (ADME) attributes and enabling victim drug-drug interaction (DDI) predictions.

Methods: A database of 368 drugs with relevant ADME parameters, main metabolizing enzymes, uptake transporters, efflux transporters, and highest change in exposure (%AUC) in presence of inhibitors was developed using published literature. Drugs were characterized according to ECCS using ionization, molecular weight and estimated permeability.

View Article and Find Full Text PDF

Montelukast, a leukotriene receptor antagonist commonly prescribed for treatment of asthma, is primarily metabolized by cytochrome P450 (CYP)2C8, and has been suggested as a probe substrate for investigating CYP2C8 activity in vivo. We evaluated the quantitative role of hepatic uptake transport in its pharmacokinetics and drug-drug interactions (DDIs). Montelukast was characterized with significant active uptake in human hepatocytes, and showed affinity towards organic anion transporting polypeptides (OATPs) in transfected cell systems.

View Article and Find Full Text PDF

The American Association of Pharmaceutical Scientists/International Transporter Consortium Joint Workshop on Drug Transporters in absorption, distribution, metabolism, and excretion was held with the objective of discussing innovative advances in transporter pharmacology. Specific topics included (i) transporters at the blood-brain barrier (BBB); (ii) emerging transport proteins; (iii) recent advances in achieving hepatoselectivity and optimizing clearance for organic anion-transporting polypeptide (OATP) substrates; (iv) utility of animal models for transporter studies; and (v) clinical correlation of transporter polymorphisms. Here, we present state-of-the-art highlights from this workshop in these key areas of focus.

View Article and Find Full Text PDF

A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression.

View Article and Find Full Text PDF

Membrane transporters play a pivotal role in many organs to maintain their normal physiological functions and contribute significantly to drug absorption, distribution, and elimination. Knowledge gained from gene modified animal models or human genetic disorders has demonstrated that interruption of the transporter activity can lead to debilitating diseases or organ toxicities. Herein we describe transporter associated diseases and organ toxicities resulting from transporter gene deficiency or functional inhibition in the liver, kidney, gastrointestinal tract (GIT), and central nervous system (CNS).

View Article and Find Full Text PDF

Recent studies in adipose tissue, pancreas, muscle, and macrophages suggest that MAP4K4, a serine/threonine protein kinase may be a viable target for antidiabetic drugs. As part of the evaluation of MAP4K4 as a novel antidiabetic target, a tool compound, 16 (PF-6260933) and a lead 17 possessing excellent kinome selectivity and suitable properties were delivered to establish proof of concept in vivo. The medicinal chemistry effort that led to the discovery of these lead compounds is described herein together with in vivo pharmacokinetic properties and activity in a model of insulin resistance.

View Article and Find Full Text PDF

Early prediction of clearance mechanisms allows for the rapid progression of drug discovery and development programs, and facilitates risk assessment of the pharmacokinetic variability associated with drug interactions and pharmacogenomics. Here we propose a scientific framework--Extended Clearance Classification System (ECCS)--which can be used to predict the predominant clearance mechanism (rate-determining process) based on physicochemical properties and passive membrane permeability. Compounds are classified as: Class 1A--metabolism as primary systemic clearance mechanism (high permeability acids/zwitterions with molecular weight (MW) ≤400 Da), Class 1B--transporter-mediated hepatic uptake as primary systemic clearance mechanism (high permeability acids/zwitterions with MW >400 Da), Class 2--metabolism as primary clearance mechanism (high permeability bases/neutrals), Class 3A--renal clearance (low permeability acids/zwitterions with MW ≤400 Da), Class 3B--transporter mediated hepatic uptake or renal clearance (low permeability acids/zwitterions with MW >400 Da), and Class 4--renal clearance (low permeability bases/neutrals).

View Article and Find Full Text PDF

PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical development for the treatment of alcoholism. Our aim was to develop and validate a simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat plasma and rat brain using liquid chromatography-tandem mass spectrometry. The analyte and stable isotope internal standard were extracted from 50 μL plasma or rat brain homogenate by protein precipitation using 0.

View Article and Find Full Text PDF