Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity.
View Article and Find Full Text PDFBackground: Cancer-associated fibroblasts (CAFs) are recruited to the tumor microenvironment (TME) and are critical drivers of breast cancer (BC) malignancy. Circulating tumor cells (CTCs) travel through hematogenous routes to establish metastases. CTCs circulate both individually and, more rarely, in clusters with other cell types.
View Article and Find Full Text PDFMetastasis-related complications account for the overwhelming majority of breast cancer mortalities. Triple negative breast cancer (TNBC), the most aggressive breast cancer subtype, has a high propensity to metastasize to distant organs, leading to poor patient survival. The forkhead transcription factor, FOXM1, is especially upregulated and overexpressed in TNBC and is known to regulate multiple signaling pathways that control many key cancer properties, including proliferation, invasiveness, stem cell renewal, and therapy resistance, making FOXM1 a critical therapeutic target for TNBC.
View Article and Find Full Text PDFLiquid biopsies represent an attractive, minimally-invasive alternative to surgical sampling or complex imaging of breast cancer and breast cancer metastasis. Here we present a summary of the major biomarker components often evaluated in liquid biopsy samples from patients with breast cancer, including circulating tumor cells, circulating cell-free tumor DNA, and cancer-associated plasma proteins. We discuss recent advancements in methods of detection and use of these biomarkers in breast cancer.
View Article and Find Full Text PDFThe transcription factor FOXM1 is upregulated and overexpressed in aggressive, therapy-resistant forms of hormone receptor-positive and triple negative breast cancers, and is associated with less good patient survival. FOXM1 signaling is also a key driver in many other cancers. Here, we identify a new class of compounds effective in suppressing FOXM1 activity in breast cancers, and displaying good potency for antitumor efficacy.
View Article and Find Full Text PDFPurpose: Paget's disease (PD) of the breast is an uncommon disease of the nipple usually accompanied by an underlying carcinoma, often HER2 + , and accounting for 0.5-5% of all breast cancer. To date, histogenesis of PD of the breast remains controversial, as two theories-transformation and epidermotropic-have been proposed to explain this disease.
View Article and Find Full Text PDFThis review summarizes the roles of CAFs in forming a "cancerized" fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) play a central role in tumor dissemination and metastases, which are ultimately responsible for most cancer deaths. Technologies that allow for identification and enumeration of rare CTC from cancer patients' blood have already established CTC as an important clinical biomarker for cancer diagnosis and prognosis. Indeed, current efforts to robustly characterize CTC as well as the associated cells of the tumor microenvironment such as circulating cancer associated fibroblasts (cCAF), are poised to unmask key insights into the metastatic process.
View Article and Find Full Text PDFBreast Cancer Res Treat
November 2017
Purpose: Elevated S100A8 expression has been observed in cancers of the bladder, esophagus, colon, ovary, and breast. S100A8 is expressed by breast cancer cells as well as by infiltrating immune and myeloid cells. Here we investigate the association of elevated S100A8 protein expression in breast cancer cells and in breast tumor stroma with survival outcomes in a cohort of breast cancer patients.
View Article and Find Full Text PDFThe tumor microenvironment (TME) is a relevant target for novel biological therapies. MV-m-uPA and MV-h-uPA are fully retargeted, species-specific, oncolytic measles viruses (MV) directed against murine or human urokinase receptor (PLAUR/uPAR), expressed in tumor and stromal cells. The effects of stromal-selective targeting by uPAR-retargeted MVs were investigated.
View Article and Find Full Text PDFCancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis.
View Article and Find Full Text PDFThe receptor for advanced glycation end products (RAGE) is highly expressed in various cancers and is correlated with poorer outcome in breast and other cancers. Here we tested the role of targeting RAGE by multiple approaches in the tumor and tumor microenvironment, to inhibit the metastatic process. We first tested how RAGE impacts tumor cell-intrinsic mechanisms using either RAGE overexpression or knockdown with short hairpin RNAs (shRNAs).
View Article and Find Full Text PDFConsequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential.
View Article and Find Full Text PDFPurpose: Although 67% of high-grade serous ovarian cancers (HGSOC) express the estrogen receptor (ER), most fail antiestrogen therapy. Because MAPK activation is frequent in ovarian cancer, we investigated if estrogen regulates MAPK and if MEK inhibition (MEKi) reverses antiestrogen resistance.
Experimental Design: Effects of MEKi (selumetinib), antiestrogen (fulvestrant), or both were assayed in ER-positive HGSOC in vitro and in xenografts.
Metastasis is facilitated by cancer-associated fibroblasts (CAF) in the tumor microenvironment through mechanisms yet to be elucidated. In this study, we used a size-based microfilter technology developed by our group to examine whether circulating CAF identified by FAP and α-SMA co-expression (cCAF) could be distinguished in the peripheral blood of patients with metastatic breast cancer. In a pilot study of patients with breast cancer, we detected the presence of cCAFs in 30/34 (88%) patients with metastatic disease (MET group) and in 3/13 (23%) patients with localized breast cancer (LOC group) with long-term disease-free survival.
View Article and Find Full Text PDFMultiple juxtacrine and paracrine interactions occur between cancer cells and non-cancer cells of the tumor microenvironment (TME) that direct tumor progression. Cancer Associated Fibroblasts (CAFs) are an integral component of the TME, and the majority of breast tumor stroma is comprised of CAFs. Heterotypic interactions between cancer cells and non-cancer cells of the TME occur via soluble agents, including cytokines, hormones, growth factors, and secreted microRNAs.
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) are progenitor cells shown to participate in breast tumor stroma formation and to promote metastasis. Despite expanding knowledge of their contributions to breast malignancy, the underlying molecular responses of breast cancer cells (BCCs) to MSC influences remain incompletely understood. Here, we show that MSCs cause aberrant expression of microRNAs, which, led by microRNA-199a, provide BCCs with enhanced cancer stem cell (CSC) properties.
View Article and Find Full Text PDFPurpose: Hyperactivation of ERK1/2 MAPK (hMAPK) leads to loss of estrogen receptor (ER) expression and poor outcome in breast cancer. microRNAs (miRNA) play important regulatory roles and serve as biomarkers of disease. Here, we describe molecular, pathologic, and clinical outcome associations of an hMAPK-miRNA expression signature in breast cancer.
View Article and Find Full Text PDFThe mechanisms by which breast cancer (BrC) can successfully metastasize are complex and not yet fully understood. Our goal was to identify tumor-induced stromal changes that influence metastatic cell behavior, and may serve as better targets for therapy. To identify stromal changes in cancer-bearing tissue, dual-species gene expression analysis was performed for three different metastatic BrC xenograft models.
View Article and Find Full Text PDFVascular endothelial growth factor-A (VEGF), a potent angiogenic factor, is also implicated in self-renewal in several normal tissue types. VEGF has been shown to drive malignant stem cells but mechanisms thereof and tumor types affected are not fully characterized. Here, we show VEGF promotes breast and lung cancer stem cell (CSC) self-renewal via VEGF receptor-2 (VEGFR-2)/STAT3-mediated upregulation of Myc and Sox2.
View Article and Find Full Text PDFBreast Cancer Res Treat
September 2014
Anti-estrogen therapies are not effective in ER- breast cancers, thus identifying mechanisms underlying lack of ER expression in ER- breast cancers is imperative. We have previously demonstrated that hyperactivation of MAPK (hMAPK) downstream of overexpressed EGFR or overexpression/amplification of Her2 represses ER protein and mRNA expression. Abrogation of hMAPK in ER- breast cancer cell lines and primary cultures causes re-expression of ER and restoration of anti-estrogen responses.
View Article and Find Full Text PDFOur goal was to establish primary cultures from dissociation of breast tumors in order to provide cellular models that may better recapitulate breast cancer pathogenesis and the metastatic process. Here, we report the characterization of six cellular models derived from the dissociation of primary breast tumor specimens, referred to as "dissociated tumor (DT) cells." In vitro, DT cells were characterized by proliferation assays, colony formation assays, protein, and gene expression profiling, including PAM50 predictor analysis.
View Article and Find Full Text PDFIncreasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44(+) CD24(neg/low) cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44(+) CD24(low+) subpopulation generates CD44(+) CD24(neg) progeny with reduced sphere formation and tumourigenicity.
View Article and Find Full Text PDF