Publications by authors named "El'skaya A"

As a person who has had a long scientific career in Ukraine, both before and after its re-acquisition of independence thirty years ago, I would like to share my observations with the readership of this Special Issue. By no means are these observations meant to provide a systematic presentation, which requires a different format. Rather, they are highly personal notes, providing snippets of the past and present and a discussion of the future of Ukrainian science.

View Article and Find Full Text PDF

The eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions.

View Article and Find Full Text PDF

Protein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, β and γ subunits that specifically associate into a heterotrimeric form eEF1B(αβγ)3.

View Article and Find Full Text PDF

The combination of the generic mobile technology and inherent stability, versatility and cost-effectiveness of the synthetic receptors allows producing optical sensors for potentially any analyte of interest, and, therefore, to qualify as a platform technology for a fast routine analysis of a large number of contaminated samples. To support this statement, we present here a novel miniature sensor based on a combination of molecularly imprinted polymer (MIP) membranes and a smartphone, which could be used for the point-of-care detection of an important food contaminant, oestrogen-like toxin zearalenone associated with contamination of cereals. The detection is based on registration of natural fluorescence of zearalenone using a digital smartphone camera after it binds to the sensor recognition element.

View Article and Find Full Text PDF

A novel smartphone-based optical biomimetic sensor based on free-standing molecularly imprinted polymer (MIP) membranes was developed for rapid and sensitive point-of-care detection of aflatoxin B1. The developed MIP membranes were capable of selective recognition of the target analyte and, at the same time, of generation of a fluorimetric sensor response, which could be registered using the camera of a smartphone and analysed using image analysis. The developed system provides a possibility of synchronous detection of aflatoxin B1 in 96 channels.

View Article and Find Full Text PDF

Translation elongation factor 1Bβ (eEF1Bβ) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bβ ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bβ catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex.

View Article and Find Full Text PDF

An excess of the excitatory neurotransmitter, glutamate, in the synaptic cleft during hypoxia/ischemia provokes development of neurotoxicity and originates from the reversal of Na-dependent glutamate transporters located in the plasma membrane of presynaptic brain nerve terminals. Here, we have optimized an electrochemical glutamate biosensor using glutamate oxidase and developed a biosensor-based methodological approach for analysis of rates of tonic, exocytotic and transporter-mediated glutamate release from isolated rat brain nerve terminals (synaptosomes). Changes in the extracellular glutamate concentrations from 11.

View Article and Find Full Text PDF

The question of what governs the translation elongation rate in eukaryotes has not yet been completely answered. Earlier, different availability of different tRNAs was considered as a main factor involved, however, recent data revealed that the elongation rate does not always depend on tRNA availability. Here, we offer another, codon-independent approach to explain specific tRNA-dependence of the elongation rate in eukaryotes.

View Article and Find Full Text PDF

Nanostructured polymeric membranes for selective recognition of aflatoxin B1 were synthesized in situ and used as highly sensitive recognition elements in the developed fluorescent sensor. Artificial binding sites capable of selective recognition of aflatoxin B1 were formed in the structure of the polymeric membranes using the method of molecular imprinting. A composition of molecularly imprinted polymer (MIP) membranes was optimized using the method of computational modeling.

View Article and Find Full Text PDF

An experimental approach for improving the sensitivity of the surface plasmon resonance (SPR) DNA hybridization sensor using gold nanoparticles (GNPs), modified by specific oligonucleotides, was elaborated. An influence of the ionic strength on the aggregation stability of unmodified GNPs and GNPs modified by the thiolated oligonucleotides was investigated by monitoring a value of light extinction at 520 nm that can be considered as a measure of a quantity of the non-aggregated GNPs. While the unmodified GNPs started to aggregate in 0.

View Article and Find Full Text PDF

The question as to why a protein exerts oncogenic properties is answered mainly by well-established ideas that these proteins interfere with cellular signaling pathways. However, the knowledge about structural and functional peculiarities of the oncoproteins causing these effects is far from comprehensive. The 97.

View Article and Find Full Text PDF

Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.

View Article and Find Full Text PDF

Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex.

View Article and Find Full Text PDF

Mammalian translation elongation factor eEF1A is involved in ribosomal polypeptide synthesis. Also, the protein fulfills many additional duties in an eukaryotic cell. Here, we identified a novel partner of the eEF1A1 isoform, namely Sgt1, a protein that possesses co-chaperon properties and participates in antiviral defense processes.

View Article and Find Full Text PDF

Translation elongation factor eEF1A is a G-protein which has a crucial role in the ribosomal polypeptide elongation and possesses a number of non-translational functions. Here, we show that the A,A(∗),A' helices segment of mammalian eEF1A is dispensable for the eEF1A*eEF1Bα complex formation. The A,A(∗),A' helices region did not interact with actin; however, its removal eliminates the actin bundling activity of eEF1A, probably due to the destruction of a dimeric structure of eEF1A.

View Article and Find Full Text PDF

Background: The constituents of stable multiprotein complexes are known to dissociate from the complex to play independent regulatory roles. The components of translation elongation complex eEF1H (eEF1A, eEF1Bα, eEF1Bβ, eEF1Bγ) were found overexpressed in different cancers. To gain the knowledge about novel cancer-related translational mechanisms we intended to reveal whether eEF1H exists as a single unit or independent subunits in different human cancers.

View Article and Find Full Text PDF

Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome.

View Article and Find Full Text PDF

Translation elongation factor 1A (eEF1A) directs aminoacyl-tRNA to the A site of 80S ribosomes. In addition, more than 97% homologous variants of eEF1A, A1 and A2, whose expression in different tissues is mutually exclusive, may fulfill a number of independent moonlighting functions in the cell; for instance, the unusual appearance of A2 in an A1-expressing tissue was recently linked to the induction of carcinogenesis. The structural background explaining the different functional performance of the highly homologous proteins is unclear.

View Article and Find Full Text PDF

Background: Eukaryotic translation elongation factor 1A2 (eEF1A2) is a known proto-oncogene. We proposed that stimulation of the eEF1A2 expression in cancer tissues is caused by the loss of miRNA-mediated control.

Methods: Impact of miRNAs on eEF1A2 at the mRNA and protein levels was examined by qPCR and western blot, respectively.

View Article and Find Full Text PDF

An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization.

View Article and Find Full Text PDF

The highly sensitive and selective potentiometric biosensor for creatinine determination has been developed by us earlier. In it, pH-sensitive field effect transistors were used as transducer and immobilized creatinine deiminase (EC 3.5.

View Article and Find Full Text PDF

Translation elongation factor eEF1A2 was purified to homogeneity from rabbit muscle by two consecutive ion-exchange column-chromatography steps and this mammalian eEF1A2 was successfully crystallized for the first time. Protein crystals obtained using ammonium sulfate as precipitant diffracted to 2.5 Å resolution and belonged to space group P6(1)22 or P6(3)22 (unit-cell parameters a = b = 135.

View Article and Find Full Text PDF

Phosphoproteomics is often aimed at deciphering the modified components of signaling pathways in certain organisms, tissues and pathologies. Phosphorylation of housekeeping proteins, albeit important, usually attracts less attention. Here, we provide targeted analysis of eukaryotic translation elongation factor 1A (eEF1A), which is the main element of peptide elongation machinery.

View Article and Find Full Text PDF

A differential pair of planar thin-film interdigitated electrodes, deposited on a ceramic pad, was used as a conductometric transducer. The three-enzyme system (invertase, mutarotase, glucose oxidase), immobilized on the transducer surface, was used as a bioselective element. The ratio between enzymes in the membrane was found experimentally considering the highest biosensor sensitivity to substrate (sucrose) and heavy metal ions.

View Article and Find Full Text PDF

Background: The signalling role of individual subunits released from some stable translation multi-molecular complexes under unfavourable circumstances is known. The disease-related role of the translation elongation factor 1 complex (eEF1) as a whole is never researched; however, its subunits possess apparent regulatory potency. Whether the individual eEF1 subunits can exist and function in cell beyond the complex is not known.

View Article and Find Full Text PDF