Publications by authors named "Ekrem Ergin"

The ectoparasitic wasp Nasonia vitripennis produces a proteinaceous venom that induces death in fly hosts by non-paralytic mechanisms. Previous in vitro assays have suggested that the primary cause of cell and tissue death is oncosis, a non-programmed cell death (PCD) pathway characterized by cellular swelling and lysis. However, ultrastructural analyses of BTI-TN-5B1 cells exposed to LC(99) doses of wasp venom revealed cellular changes more consistent with apoptosis and/or non-apoptotic PCD than oncosis or necrosis: By 3h after incubation with venom, susceptible cells displayed indentations in the nuclear membranes, large nucleoli, and extensive vacuolization throughout the cytoplasm.

View Article and Find Full Text PDF

Venom from the endoparasitic wasp Pimpla turionellae L. (Hymenoptera: Ichneumonidae) was found to contain a complex mixture of biogenic amines, noradrenalin, phospholipase B, and several proteins and peptides. The amount of noradrenalin and serotonin was found to be highest in venom from newly emerged wasps and decreased with age.

View Article and Find Full Text PDF

The biological activity of venom from Pimpla turionellae L. (Hymenoptera: Ichneumonidae) was examined in vivo toward larvae and pupae of Galleriae mellonella L. (Lepidoptera: Pyralidae), and in vitro toward bacterial and fungal cultures, as well as cultured insect cells.

View Article and Find Full Text PDF

During parasitism, the ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae) induces a developmental arrest in host pupae that is sustained until the fly is either consumed by developing larvae or the onset of death. Bioassays using fluids collected from the female reproductive system (calyx, alkaline gland, acid gland, and venom reservoir) indicated that the venom gland and venom reservoir are the sources of the arrestant and inducer(s) of death. Infrared spectroscopic analyses revealed that crude venom is acidic and composed of amines, peptides, and proteins, which apparently are not glycosylated.

View Article and Find Full Text PDF