Publications by authors named "Ekonomou A"

Article Synopsis
  • Microglia and astrocytes, which support brain health by managing metal levels, become less effective with age, potentially increasing the risk of neurodegenerative diseases.
  • A study on C57Bl/6J mice revealed that older mice showed significant increases in iron, copper, and zinc deposits in brain regions, particularly the basal ganglia and white matter, suggesting age-related metal accumulation.
  • Observations indicated that, as mice aged, the number of microglia generally increased while astrocyte numbers decreased; morphological changes in glial cells were noted, indicating potential dysfunction as aging altered metal and glial interactions in the brain.
View Article and Find Full Text PDF

Background: Ischemic stroke is a devastating condition, with metabolic derangement and persistent inflammation enhancing the initial insult of ischaemia. Recombinant tissue plasminogen remains the only effective treatment but limited as therapy must commence soon after the onset of symptoms.

Purpose: We investigated whether acetate, which modulates many pathways including inflammation, may attenuate brain injury in stroke.

View Article and Find Full Text PDF

Objective: To examine the impact of selective serotonin reuptake inhibitors (SSRIs) and depression on neurogenesis and cognition in dementia with Lewy bodies (DLB) and Parkinson disease dementia (PDD).

Methods: Late-stage progenitor cells were quantified in the subgranular zone (SGZ) of the hippocampal dentate gyrus of DLB/PDD patients (n = 41) and controls without dementia (n = 15) and compared between treatment groups (unmedicated, SSRIs, acetyl cholinesterase inhibitors [AChEIs], combined SSRIs and AChEIs).

Results: DLB/PDD patients had more doublecortin-positive cells in the SGZ compared to controls.

View Article and Find Full Text PDF

Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation.

View Article and Find Full Text PDF

Background: Reports of altered endogenous neurogenesis in people with Alzheimer's disease (AD) and transgenic AD models have suggested that endogenous neurogenesis may be an important treatment target, but there is considerable discrepancy among studies. We examined endogenous neurogenesis and glia changes across the range of pathologic severity of AD in people with and without dementia to address this key question.

Methods: Endogenous neurogenesis and glia in the subventricular zone and dentate gyrus neurogenic niches were evaluated using single and double immunohistochemistry and a validated antibody selection for stage-specific and type-specific markers in autopsy tissue from a representative cohort of 28 participants in the Medical Research Council Cognitive Function and Ageing Study.

View Article and Find Full Text PDF

Neurogenesis occurs in the subventricular zone and the sub-granular layer of the hippocampus and is thought to take place in 5 stages, including proliferation, differentiation, migration, targeting, and integration phases, respectively. In Alzheimer's disease (AD) both increased and decreased neurogenesis has been reported and cholinergic activity is assumed to be involved in neurogenesis. The aim of this study was to systematically assess different phases of neurogenesis and their relation to AD and cholinergic pathology.

View Article and Find Full Text PDF

Aims: Recent work has highlighted a significant increase of neural stem/progenitor cells after stroke in humans. In this study, we examined neurogenesis in small vessel disease, a key concurrent pathology in Alzheimer's disease.

Methods: We assayed autopsy tissue from 13 vascular dementia patients with small vessel disease and 12 age-matched subjects without cerebrovascular pathology, undertaking immunohistochemistry in the affected brain area and the subventricular zone with a well-characterized battery of antibodies to detect neural stem cells/progenitors and immature neurones, as well as choline acetyltransferase immunoreactivity.

View Article and Find Full Text PDF

Introduction: We report the case of a patient with a benign multicystic peritoneal mesothelioma and describe its appearance on computed tomography scans and ultrasonography, in correlation with gross clinical and pathological findings.

Case Presentation: A 72-year-old Caucasian woman presented to our emergency department with acute abdomen signs and symptoms. A clinical examination revealed a painful palpable mass in her left abdomen.

View Article and Find Full Text PDF

Dementia with Lewy bodies (DLB) is associated with alpha synuclein pathology and slowly progressive dementia. Progenitor abnormalities have previously been reported in the subventricular zone (SVZ) adjacent to the lateral ventricle. To evaluate changes in neural stem cells and progenitors in the hippocampal neurogenic niche, immunohistochemistry (IHC) using the neural stem cell markers Musashi 1, nestin, proliferating cell nuclear antigen (PCNA), doublecortin, and glial fibrillary acidic protein (GFAP) were examined in age-matched control and DLB groups.

View Article and Find Full Text PDF

Since groundbreaking studies demonstrated the presence of progenitor cells in the adult human brain, there have been intense interests in their potential therapeutic application, but to date only limited data has been obtained in man. An immunohistological study was performed in order to examine neurogenesis in both the subventricular and peri-infarct zones of vascular dementia patients compared to age-matched controls. The results were striking, showing a significant increase of progenitor cells in both the subventricular zone and in peri-infarct area in patients with vascular dementia compared to controls, which was sustained even in patients with infarcts occurring more than three months prior to autopsy.

View Article and Find Full Text PDF

Increased endogenous neurogenesis has a significant regenerative role in many experimental models of cerebrovascular diseases, but there have been very few studies in humans. We therefore examined whether there was evidence of altered endogenous neurogenesis in an 84-year-old patient who suffered a cerebrovascular accident 1 week prior to death. Using antibodies that specifically label neural stem/neural progenitor cells, we examined the presence of immunopositive cells around and distant from the infarcted area, and compared this with a control, age-matched individual.

View Article and Find Full Text PDF

Background: Exciting preliminary work indicates an increase in progenitor activity in the subgranular zone of the dentate gyrus of people with Alzheimer's disease (AD) compared to that of controls. We examine progenitor activity in the other main progenitor niche, the subventricular zone (SVZ), as well as potential associations with key pathological and neurochemical substrates.

Method: Immunocytochemistry techniques utilizing nestin and Musashi1 antibodies were used to examine progenitor activity in the SVZ and to enable comparisons between seven patients with AD and seven controls, based upon the quantification of the percentage area covered, using the Image Pro Plus v.

View Article and Find Full Text PDF

Little is known about the molecular mechanisms and intrinsic factors that are responsible for the emergence of neuronal subtype identity. Several transcription factors that are expressed mainly in precursors of the ventral telencephalon have been shown to control neuronal specification, but it has been unclear whether subtype identity is also specified in these precursors, or if this happens in postmitotic neurons, and whether it involves the same or different factors. SOX1, an HMG box transcription factor, is expressed widely in neural precursors along with the two other SOXB1 subfamily members, SOX2 and SOX3, and all three have been implicated in neurogenesis.

View Article and Find Full Text PDF

Human embryonic stem (hES) cells are pluripotent cells isolated from early human embryos. They can be grown in vitro and made to differentiate into many different cell types. These properties have suggested that they may be useful in cell replacement therapy for many degenerative diseases.

View Article and Find Full Text PDF

Introduction: To evaluate the colonoscopy effects on serum levels of prostate specific antigen (PSA) and PSA ratio.

Subjects And Methods: Thirty men were studied (median age 68 years, range 32-89). All of them had their serum PSA (total and free) measured 24 hours prior to colonoscopy and also 24 hours, 7 and 30 days after procedure.

View Article and Find Full Text PDF

Interaction between basal ganglia and cerebral cortex is critical for normal goal-directed behavior. In the present study we have used the immediate early gene zif/268, as functional marker to investigate how the stimulation of adenosine A2A receptors, i.e.

View Article and Find Full Text PDF

Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice.

View Article and Find Full Text PDF

'Kindling' is a phenomenon of epileptogenesis, which has been widely used as an experimental model of temporal lobe epilepsy. In the present study, we have examined the contribution of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) glutamate receptors and their subunits (GluR-A, -B, -C and -D) to the acquisition and maintenance of the kindled state in the pentylenetetrazole (PTZ)-induced 'kindling' mouse model, by using quantitative autoradiography and in situ hybridization. Region-specific increases in [3H]AMPA binding were seen in kindled animals in the CA3 region of hippocampus and in the temporal cortex 1 week after the last PTZ injection.

View Article and Find Full Text PDF

In a temporal lobe epilepsy (TLE) model induced by kainic acid (KA), we examined the effect of limbic seizures on A1 adenosine receptor distribution in hippocampus and cortex. By using quantitative autoradiography, we determined a progressive decrease in A1 receptor density in CA1 and CA3 regions of hippocampus, which coincided in time with the degenerating process of hippocampal pyramidal cells. This result indicates that a great amount of A1 receptors are located postsynaptically on pyramidal cell dendrites.

View Article and Find Full Text PDF

Ageing is a multifactorial, inevitable event of life span, which affects neurotransmission in the CNS. Since adenosine is a major neuromodulator of the synaptic activity, it was of interest to investigate the possible modification of the adenosinergic system in the brain during ageing. Using "in vitro" quantitative autoradiography and the radioactive ligands [(3)H]Cyclohexyladenosine and [(3)H]Nitrobenzylthioinosine, we have studied the distribution of A1 adenosine receptors and adenosine uptake sites in the aged mice (26 months) compared to the young ones (3 months).

View Article and Find Full Text PDF

"Kindling" is a phenomenon of epileptogenesis, which has been widely used as an experimental model of temporal lobe epilepsy. At the present work we investigated the contribution of NMDA receptors in the Pentylenetetrazol-induced "kindling" model in the mouse brain, by using quantitative autoradiography and the radioactive ligands [3H]MK801 and [3H]L-glutamate (NMDA-sensitive component). One week after establishment of kindling, a small but significant increase in [3H]MK801 as well as NMDA-sensitive [3H]glutamate binding was seen, being restricted to the molecular layer (ML) of the dentate gyrus (DG) and the CA3 region of the hippocampus.

View Article and Find Full Text PDF

The possible involvement of the adenosinergic modulatory system in the pathogenesis of absence seizures was investigated in genetic absence epilepsy rats from Strasbourg (GAERS). Using in vitro quantitative autoradiography, the distribution of A1 adenosine receptors and adenosine uptake sites in the brain of GAERS was studied and compared to that of control animals. An area-specific lower density of A1 receptors (15% decrease) was detected in reticular (nRT) and anterior ventral (AV) thalamic nuclei as well as basal ganglia in the brains of GAERS animals compared with control animals.

View Article and Find Full Text PDF