The redirection of T lymphocytes against tumor-associated or tumor-specific antigens, using bispecific antibodies or chimeric antigen receptors (CAR), has shown therapeutic success against certain hematological malignancies. However, this strategy has not been effective against solid tumors. Here, we describe the development of CAR T cells targeting p95HER2, a tumor-specific antigen found in HER2-amplified solid tumors.
View Article and Find Full Text PDFAn appropriately designed pharmacokinetic (PK) assay that is sensitive for anti-drug antibody (ADA) impact on relevant exposure is an alternative strategy to understand the neutralizing potential of ADAs. However, guidance on how to develop such PK assays and how to confirm the functional ADA impact on exposure is missing. Here, the PK assay of a T-cell-engaging bispecific antibody, cibisatamab, was developed based on its mechanism of action (MoA).
View Article and Find Full Text PDFJ Immunother Cancer
July 2022
Background: Chimeric antigen receptor (CAR) T cell therapy has proven its clinical utility in hematological malignancies. Optimization is still required for its application in solid tumors. Here, the lack of cancer-specific structures along with tumor heterogeneity represent a critical barrier to safety and efficacy.
View Article and Find Full Text PDFSimlukafusp alfa (FAP-IL2v, RO6874281/RG7461) is an immunocytokine comprising an antibody against fibroblast activation protein α (FAP) and an IL-2 variant with a retained affinity for IL-2Rβγ > IL-2 Rβγ and abolished binding to IL-2 Rα. Here, we investigated the immunostimulatory properties of FAP-IL2v and its combination with programmed cell death protein 1 (PD-1) checkpoint inhibition, CD40 agonism, T cell bispecific and antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. The binding and immunostimulatory properties of FAP-IL2v were investigated and compared with FAP-IL2wt.
View Article and Find Full Text PDFFab consist of a heavy and light chain and can be subdivided into a variable (V and V ) and a constant region (C 1 and C ). The variable region contains the complementarity-determining region (CDR), which is formed by six hypervariable loops, shaping the antigen binding site, the paratope. Apart from the CDR loops, both the elbow angle and the relative interdomain orientations of the V -V and the C 1-C domains influence the shape of the paratope.
View Article and Find Full Text PDFSusceptibility to multiple autoimmune diseases is associated with common gene polymorphisms influencing IL-2 signaling and T function, making T-specific expansion by IL-2 a compelling therapeutic approach to treatment. As an in vivo IL-2 half-life enhancer we used a non-targeted, effector-function-silent human IgG1 as a fusion protein. An IL-2 mutein (N88D) with reduced binding to the intermediate affinity IL-2Rβγ receptor was engineered with a stoichiometry of two IL-2N88D molecules per IgG, i.
View Article and Find Full Text PDFOncoimmunology
January 2017
We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology.
View Article and Find Full Text PDFPurpose: CEA TCB is a novel IgG-based T-cell bispecific (TCB) antibody for the treatment of CEA-expressing solid tumors currently in phase I clinical trials (NCT02324257). Its format incorporates bivalent binding to CEA, a head-to-tail fusion of CEA- and CD3e-binding Fab domains and an engineered Fc region with completely abolished binding to FcγRs and C1q. The study provides novel mechanistic insights into the activity and mode of action of CEA TCB.
View Article and Find Full Text PDFUnlabelled: One of the most prominent cell populations playing a role in rheumatoid arthritis (RA) is activated fibroblast-like synoviocytes. Among many other proteins, fibroblast-like synoviocytes dominantly express fibroblast activation protein (FAP). Because of the high expression of FAP in arthritic joints, radioimmunoimaging of activated fibroblasts with anti-FAP antibodies might be an attractive noninvasive imaging tool in RA.
View Article and Find Full Text PDFRegulatory T cells (Tregs) expressing FOXP3 are essential for the maintenance of self-tolerance and are deficient in many common autoimmune diseases. Immune tolerance is maintained in part by IL-2 and deficiencies in the IL-2 pathway cause reduced Treg function and an increased risk of autoimmunity. Recent studies expanding Tregs in vivo with low-dose IL-2 achieved major clinical successes highlighting the potential to optimize this pleiotropic cytokine for inflammatory and autoimmune disease indications.
View Article and Find Full Text PDFWe have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH.
View Article and Find Full Text PDFPurpose: Anti-EGF receptor (EGFR) antibodies and small-molecule tyrosine kinase inhibitors have shown activity in epithelial tumors; however, agents that work by blocking the EGFR growth signal are ineffective when the oncogenic stimulus arises downstream, such as in tumors with KRAS mutations. Antibodies of the IgG1 subclass can also kill tumor cells directly through antibody-dependent cell-mediated cytotoxicity (ADCC), and the efficacy of this is determined by the interaction of the Fc portion of the target cell-bound antibody and Fc receptors present on immune effector cells.
Experimental Design: We report the development of GA201, a novel anti-EGFR monoclonal antibody with enhanced ADCC properties.