Developments in microarray technology promise to lead to great advancements in the biomedical and biological field. However, implementation of these analytical tools often relies on signal amplification strategies that are essential to reach the sensitivity levels required for a variety of biological applications. This is true especially for reverse phase arrays where a complex biological sample is directly immobilized on the chip.
View Article and Find Full Text PDFInfection of cells and tissues by pathogenic microorganisms often involves severe reprogramming of host cell signaling. Typically, invasive microorganisms manipulate host cellular pathways seeking advantage for replication and survival within the host, or to evade the immune response. Understanding such subversion of the host cell by intracellular pathogens at a molecular level is the key to possible preventive and therapeutic interventions on infectious diseases.
View Article and Find Full Text PDFPolymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark.
View Article and Find Full Text PDFDNA microarrays have become a powerful tool for expression profiling and other genomics applications. A critical factor for their sensitivity is the interfacial coating between the chip substrate and the bound DNA. Such a coating has to embrace the divergent requirements of tightly binding the capture probe DNA during the spotting process and of minimizing the nonspecific binding of target DNA during the hybridization assay.
View Article and Find Full Text PDF