Publications by authors named "Ekinci K"

The current meta-analysis was employed to combine the results of multiple studies into a single estimate related to B-LG, CSN3, DGAT1, PRL, GH, and PIT1 gene polymorphisms and their effects on milk production traits. The purpose of this meta-analysis was to investigate associations between B-LG, CSN3, DGAT1, GH, PIT1, and PRLgene polymorphisms with milk production traits in Holstein dairy cows. An extensive search was done from 2002 to 2022 year.

View Article and Find Full Text PDF

Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes.

View Article and Find Full Text PDF

The study aimed to determine the effects of torrefaction on the fuel properties of pellets. Therefore, firstly, torrefaction parameters of rose ( Mill.) oil distillation solid waste and red pine sawdust were determined through the torrefaction optimization process in terms of temperature and holding time.

View Article and Find Full Text PDF

Bacteria meticulously regulate their intracellular ion concentrations and create ionic concentration gradients across the bacterial membrane. These ionic concentration gradients provide free energy for many cellular processes and are maintained by transmembrane transport. Given the physical dimensions of a bacterium and the stochasticity in transmembrane transport, intracellular ion concentrations and hence the charge state of a bacterium are bound to fluctuate.

View Article and Find Full Text PDF

Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber.

View Article and Find Full Text PDF

Piezoresistive strain gauges allow for electronic readout of mechanical deformations with high fidelity. As piezoresistive strain gauges are aggressively being scaled down for applications in nanotechnology, it has become critical to investigate their physical attributes at different limits. Here, we describe an experimental approach for studying the piezoresistive gauge factor of a gold thin-film nanoresistor as a function of frequency.

View Article and Find Full Text PDF

We have developed a microfluidic platform for engineering cardiac microtissues in highly-controlled microenvironments. The platform is fabricated using direct laser writing (DLW) lithography and soft lithography, and contains four separate devices. Each individual device houses a cardiac microtissue and is equipped with an integrated strain actuator and a force sensor.

View Article and Find Full Text PDF

We study the frequency spectrum of the thermal force giving rise to Brownian motion of a nanomechanical beam resonator in a viscous liquid. In the first set of experiments, we measure the power spectral density (PSD) of the position fluctuations of the resonator around its fundamental mode at its center. Then, we measure the frequency-dependent linear response of the resonator, again at its center, by driving it with a harmonic force that couples well to the fundamental mode.

View Article and Find Full Text PDF
Article Synopsis
  • The extracellular matrix (ECM) plays a significant role in the progression of tumors, particularly in the invasion and eventual spread to other parts of the body.
  • A new study developed a 3D microfluidic culture system to simulate how breast cancer cells invade through the ECM and escape into a lymphatic-like space.
  • Findings indicate that lower-density collagen allows MDA-MB-231 tumor cells to invade and escape more quickly, highlighting the crucial role of ECM structure, specifically pore size, in the process of cancer cells spreading into the bloodstream.
View Article and Find Full Text PDF

As the composting industry develops rapidly in the world, the compost producers have focused on the efficiency of energy utilization in production without restricting the quality of compost in the forced ventilation systems. Therefore, this experimental study quantified the impacts of initial C/N ratio on aeration requirement and energy consumption due to aeration for reactor composting of rose pomace through kinetics of the process using fifteen 100-l composting reactors. The results of the study showed that initial C/N ratio significantly affected decomposition rate, compost maturity, and dry matter losses and organic matter losses (P < 0.

View Article and Find Full Text PDF

The lack of rapid antibiotic susceptibility tests adversely affects the treatment of bacterial infections and contributes to increased prevalence of multidrug-resistant bacteria. Here, we describe an all-electrical approach that allows for ultrasensitive measurement of growth signals from only tens of bacteria in a microfluidic device. Our device is essentially a set of microfluidic channels, each with a nanoconstriction at one end and cross-sectional dimensions close to that of a single bacterium.

View Article and Find Full Text PDF

Manipulation and characterization of nanoscale objects through electrokinetic techniques offer numerous advantages compared to the existing optical methods and hold great potential for both fundamental research and practical applications. Here we present a novel electrokinetic tweezer for single nanoparticle manipulation and characterization based on electrokinetic trapping near a low-aspect-ratio nanopore. We find that this nanopore-based electrokinetic tweezer share lots of similarity with optical tweezers and can be modeled as an overdamped harmonic oscillator, with the spring constant of the system being the trap stiffness.

View Article and Find Full Text PDF

Background: Road traffic noise influencing directly public health in the modern cities is a growing problem in both developing and developed countries. The objective of this study was to model traffic-induced noise in Antalya province, validate the model with noise emission data, and to run the model for the noise preventive scenarios.

Methods: In this study, modeling of traffic-induced noise was performed using SoundPLAN® software at Gazi Boulevard in the city of Antalya.

View Article and Find Full Text PDF

This study was conducted to determine the effects of C/N ratio and free air space in co-composting of sewage sludge with tomato stalk and dairy manure. Experiments were carried out in 100 L of stainless steel aerobic compost reactors with full automation system and monitored for 32 days. The temperature was controlled according to the Rutgers strategy.

View Article and Find Full Text PDF

Various nanomechanical movements of bacteria provide a signature of bacterial viability. Most notably, bacterial movements have been observed to subside rapidly and dramatically when the bacteria are exposed to effective antibiotics. Thus, monitoring bacterial movements, if performed with high fidelity, could offer a path to various clinical microbiological applications, including antibiotic susceptibility tests.

View Article and Find Full Text PDF

We explore the scaling behavior of an unsteady flow that is generated by an oscillating body of finite size in a gas. If the gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes more appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect or local equilibrium is violated due to the high rate of strain.

View Article and Find Full Text PDF

In this study, two-phase olive-mill pomace with poultry manure and chopped tomato harvest stalks were composted at different initial carbon/nitrogen (C/N) ratios with fixed free air space of 35%. Composting experiment was carried out in the 15 aerobic reactors made of stainless steel and was monitored for 28 days. During the composting process, temperature, moisture content, organic matter (OM), pH, electrical conductivity, oxygen and carbon dioxide concentrations, total carbon, total nitrogen, ammonium nitrogen ([Formula: see text]), nitrate nitrogen ([Formula: see text]), and total phosphorus were monitored.

View Article and Find Full Text PDF

Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers.

View Article and Find Full Text PDF

In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been rigorously tested. Here, we demonstrate experimentally and computationally that the interstitial fluid pressure within an extracellular matrix gel in a microfluidic device can, in some cases, react with a long time delay to external loading.

View Article and Find Full Text PDF

Rose oil is a specific essential oil that is produced mainly for the cosmetics industry in a few selected locations around the world. Rose oil production is a water distillation process from petals of Rosa damascena Mill. Since the oil content of the rose petals of this variety is between 0.

View Article and Find Full Text PDF

Nanomechanical motion of bacteria adhered to a chemically functionalized silicon surface is studied by means of a microcantilever. A non-specific binding agent is used to attach () to the surface of a silicon microcantilever. The microcantilever is kept in a liquid medium, and its nanomechanical fluctuations are monitored using an optical displacement transducer.

View Article and Find Full Text PDF

This study describes a non-invasive method for mapping interstitial fluid pressure within hydrogel-based microscale tissues. The method is based on embedding (or forming) a tissue within a silicone (PDMS) microfluidic device, and measuring the extremely slight displacement (<1 μm) of the PDMS optically when the device is pressurized under static and flow conditions. The displacement field under uniform pressure provides a map of the local device stiffness, which can then be used to obtain the non-uniform pressure field under flow conditions.

View Article and Find Full Text PDF

We present an experimental study of a confined nanoflow, which is generated by a sphere oscillating in the proximity of a flat solid wall in a simple fluid. Varying the oscillation frequency, the confining length scale, and the fluid mean free path over a broad range provides a detailed map of the flow. We use this experimental map to construct a scaling function, which describes the nanoflow in the entire parameter space, including both the hydrodynamic and the kinetic regimes.

View Article and Find Full Text PDF

We report a Silicon nano-opto-mechanical device in which a nanomechanical doubly-clamped beam resonator is integrated to an optical microdisk cavity. Small flexural oscillations of the beam cause intensity modulations in the circulating optical field in the nearby microdisk cavity. By monitoring the corresponding fluctuations in the cavity transmission via a fiber-taper, one can detect these oscillations with a displacement sensitivity approaching 10 fm·Hz-1/2 at an input power level of 50 μW.

View Article and Find Full Text PDF

Development of efficient and sensitive motion transducers for arrays of nanoelectromechanical systems (NEMS) is important for fundamental research as well as for technological applications. Here, we report a single-wire nanomechanical transducer interface, which relies upon near-field optomechanical interactions. This multiplexed transducer interface comes in the form of a single-mode fiber taper on a fiber-optic cable.

View Article and Find Full Text PDF