Publications by authors named "Ekin Sehit"

Interleukin-6 (IL-6) belongs to the cytokine family and plays a vital role in regulating immune response, bone maintenance, body temperature adjustment, and cell growth. The overexpression of IL-6 can indicate various health complications, such as anastomotic leakage, cancer, and chronic diseases. Therefore, the availability of highly sensitive and specific biosensing platforms for IL-6 detection is critical.

View Article and Find Full Text PDF

Although membrane technology has demonstrated outstanding pathogen removal capabilities, current commercial membranes are insufficient for removing small viruses at trace levels due to certain limitations. The theoretical and practical significance of developing a new form of hydrophilic, anti-fouling, and virus-specific ultra-purification membrane with high capturing and separation efficiency, stability, and throughput for water treatment is of the utmost importance. In this study, molecularly imprinted membranes (MIMs) were fabricated from polyvinylidene fluoride (PVDF) membranes utilizing novel surface hydrophilic modification techniques, followed by the immobilization of virus-specific molecularly imprinted nanoparticles (nanoMIPs) as synthetic receptors.

View Article and Find Full Text PDF

Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks.

View Article and Find Full Text PDF

Rapid, highly sensitive, and accurate virus circulation monitoring techniques are critical to limit the spread of the virus and reduce the social and economic burden. Therefore, point-of-use diagnostic devices have played a critical role in addressing the outbreak of COVID-19 (SARS-CoV-2) viruses. This review provides a comprehensive overview of the current techniques developed for the detection of SARS-CoV-2 in various body fluids (e.

View Article and Find Full Text PDF

The determination of disease-associated molecules at trace amounts is a key factor for early and efficient diagnosis from human body fluids. Herein, an ultrasensitive electrochemical sensor based on hybrid epitope imprinting and nanomaterial amplification was developed. The hybrid epitope imprinting was achieved by electropolymerization in the presence of two computationally selected and cysteine modified epitopes of neuron specific enolase (NSE), as-synthesized gold nanoparticles (AuNPs), and functional monomer.

View Article and Find Full Text PDF

A non-enzymatic electrochemical glucose sensor with high sensitivity and selectivity was developed using gold nanoparticles-decorated molecularly imprinted polymers (AuNP-MIPs). The AuNP-MIPs were synthesized on a gold surface by multistep amperometry using the optimized conditions and in-house synthesized gold nanoparticles in the presence of glucose as the template. The AuNP-MIPs were investigated by employing atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrochemical techniques to confirm successful fabrication of the sensor.

View Article and Find Full Text PDF

The last decade has witnessed an immense demand for the development of new glucose biosensors. The research has mainly focused on achieving biocompatible and improved sensing capabilities as compared to the current technologies, which opens new directions toward more efficient glucose sensors. These sensing platforms have been continuously evolving with the contribution of novel materials, such as gold, platinum, metal alloys/adatom, graphene, composites and glucose-specific organic materials, owing to their electrocatalytic response to the oxidation of glucose.

View Article and Find Full Text PDF