Publications by authors named "Ekim Z Taskiran"

The combination of gelatin and hydroxyapatite (HA) has emerged as a promising strategy in dental tissue engineering due to its favorable biocompatibility, mechanical properties, and ability to support cellular activities essential for tissue regeneration, rendering them ideal components for hard tissue applications. Besides, precise control over interconnecting porosity is of paramount importance for tissue engineering materials. Conventional methods for creating porous scaffolds frequently encounter difficulties in regulating pore size distribution.

View Article and Find Full Text PDF

Background: Rett syndrome (RTT) is a rare neurodevelopmental disorder that primarily affects females and is characterized by a period of normal development followed by severe cognitive, motor, and communication impairment. The syndrome is predominantly caused by mutations in the MECP2. This study aimed to use comprehensive multi-omic analysis to identify the molecular and metabolic alterations associated with Rett syndrome.

View Article and Find Full Text PDF

Placental transmogrification of the lung (PTL) is a rare pulmonary condition characterized by the presence of immature placental villous structures. The etiology and molecular mechanisms underlying this disease remain largely unknown. This functional study aimed to identify the molecular signatures in the pathogenesis of PTL via comprehensive transcriptome analysis.

View Article and Find Full Text PDF

Skeletal ciliopathies constitute a subgroup of ciliopathies characterized by various skeletal anomalies arising from mutations in genes impacting cilia, ciliogenesis, intraflagellar transport process, or various signaling pathways. Short-rib thoracic dysplasias, previously known as Jeune asphyxiating thoracic dysplasia (ATD), stand out as the most prevalent and prototypical form of skeletal ciliopathies, often associated with semilethality. Recently, pathogenic variants in GRK2, a subfamily of mammalian G protein-coupled receptor kinases, have been identified as one of the underlying causes of Jeune ATD.

View Article and Find Full Text PDF

Resistance to immunity is associated with the selection of cancer cells with superior capacities to survive inflammatory reactions. Here, we tailored an ex vivo immune selection model for acute myeloid leukemia (AML) and isolated the residual subpopulations as "immune-experienced" AML (ieAML) cells. We confirmed that upon surviving the immune reactions, the malignant blasts frequently decelerated proliferation, displayed features of myeloid differentiation and activation, and lost immunogenicity.

View Article and Find Full Text PDF

Retinal dystrophies are a common health problem worldwide that are currently incurable due to the inability of retinal cells to regenerate. Inherited retinal diseases (IRDs) are a diverse group of disorders characterized by progressive vision loss caused by photoreceptor cell dysfunction. The eye has always been an attractive organ for the development of novel therapies due to its independent access to the systemic pathway.

View Article and Find Full Text PDF

Chronic skeletal muscle degeneration is characterized by fiber atrophy accompanied by deposition of extracellular matrix (ECM) components and fatty infiltration. Excessive accumulation of ECM leads to fibrosis via the contribution of fibro-adipogenic precursors (FAPs). Fibrosis also accompanies disuse atrophy and sarcopenia without significant inflammation.

View Article and Find Full Text PDF

Introduction: Mowat-Wilson syndrome (MWS) is an autosomal-dominant complex developmental disorder characterized by distinctive facial appearance, intellectual disability, epilepsy, and various clinically heterogeneous abnormalities reminiscent of neurocristopathies. MWS is caused by haploinsufficiency of due to heterozygous point mutations and copy number variations.

Case Presentation: We report on two unrelated affected individuals with novel indel mutations, molecularly confirming the diagnosis of MWS.

View Article and Find Full Text PDF

Primordial dwarfism (PD) is one of a highly heterogeneous group of disorders characterized by severe prenatal/postnatal growth restriction. Defects in various pathways such as DNA repair mechanism, impaired centrioles, abnormal IGF expression, and spliceosomal machinery may cause PD including Seckel syndrome, Silver-Russell syndrome. Microcephalic osteodysplastic primordial dwarfism (MOPD) types I/III, II, and Meier-Gorlin syndrome.

View Article and Find Full Text PDF

Congenital diarrheal disorders (CDDs) with genetic etiology are uncommon hereditary intestinal diseases characterized by chronic, life-threatening, intractable watery diarrhea that starts in infancy. CDDs can be mechanistically divided into osmotic and secretory diarrhea. Congenital tufting enteropathy (CTE), also known as intestinal epithelial dysplasia, is a type of secretory CDD.

View Article and Find Full Text PDF

Glycine encephalopathy with normal serum glycine (MIM #617301), also known as GLYT1 encephalopathy, is an extremely rare disorder caused by biallelic variants in SLC6A9 and characterised by facial dysmorphic features, skeletal findings including contractures, knee hyperextension, and joint dislocations and seizures. To date, only ten patients from five families have been reported and only two of them could survive until childhood. In this study, we report on a consanguineous Turkish couple with a history of six pregnancies with three habitual abortions and three postpartum exitus.

View Article and Find Full Text PDF

Immune checkpoint inhibitor (ICI) immunotherapy relies on the restoration of T-cell functions. The ICI receptors are not only found on exhausted T cells but also upregulated upon activation and reach high levels on effector T cells. In an ex vivo model, this study explored the consequences of PD-1 and cytotoxic T-lymphocyte antigen (CTLA-4) blockade applied during specific time frames of T-cell stimulation that coincide with distinct functional phases in type 1 helper T (Th1) cells.

View Article and Find Full Text PDF

Background: Xeroderma pigmentosum is an extremely serious genetic disorder defined by sensitivity to sunlight, resulting in sunburn and pigment changes. If patients are not completely protected from ultraviolet radiation, xeroderma pigmentosum is characterized by a greatly increased risk of sunlight-induced cutaneous neoplasms. There is no standard therapy for skin cancer of xeroderma pigmentosum.

View Article and Find Full Text PDF

Objective: Oculoauriculovertebral spectrum (OAVS) is a genetically and clinically heterogeneous disorder that occurs due to a developmental field defect of the first and second pharyngeal arches. Even though recent whole exome sequencing studies (WES) have led to identification of several genes associated with this spectrum in a subset of individuals, complete pathogenesis of OAVS remains unsolved. In this study, molecular genetic etiology of OAVS was systematically investigated.

View Article and Find Full Text PDF

Pyloric atresia (PA) is a rare gastrointestinal anomaly that occurs either as an isolated lesion or in association with other congenital or hereditary anomalies. Familial occurrence of PA with epidermolysis bullosa (EB) has been well documented and variants in ITGA6, ITGB4, and PLEC are known to cause EB with PA. However, no gene variants have been defined in familial isolated PA.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an aggressive tumor type with early dissemination and distant metastasis capacity. Even though optimal chemotherapy responses are observed initially in many patients, therapy resistance is almost inevitable. Accordingly, SCLC has been regarded as an archetype for cancer stem cell (CSC) dynamics.

View Article and Find Full Text PDF

Diamond Blackfan Anemia (DBA) is an inherited bone marrow (BM) failure syndrome, characterized by a paucity of erythroid differentiation. DBA is mainly caused by the mutations in ribosomal protein genes, hence classified as ribosomopathy. However, in approximately 30% of patients, the molecular etiology cannot be discovered.

View Article and Find Full Text PDF

Spondyloepimetaphyseal dysplasia (SEMD) is a group of genetic skeletal disorders characterized by disproportionate short stature, and varying degrees of vertebral, epiphyseal, and metaphyseal involvement of the skeleton. According to the Nosology and classification of genetic skeletal disorders 2019 revision, more than 20 types of SEMD have been identified, and SEMD with immune deficiency, EXTL3 type is one of the newcomers. Affected individuals display variable skeletal abnormalities and neurodevelopmental findings.

View Article and Find Full Text PDF

Kaufman oculocerebrofacial syndrome is a rare autosomal recessive disorder which represents a phenotype mainly involving craniofacial and neurodevelopmental manifestations due to gene mutations. The vast majority of the affected individuals exhibit microcephaly, eye abnormalities, and typical facial gestalt including blepharophimosis, ptosis, telecanthus, upslanting palpebral fissures, dysplastic ears, and micrognathia. We encountered 2 siblings in whom severe psychomotor delay, distinctive facial features, hearing loss, and respiratory distress were observed.

View Article and Find Full Text PDF

Colony stimulating factor 1 receptor (CSF1R, MIM# 164770) encodes a tyrosine-kinase receptor playing an important role in development of osteoclasts and microglia. Heterozygous CSF1R variants have been known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS, MIM# 221820), an adult-onset leukoencephalopathy characterized by loss of motor functions and cognitive decline. Recently, a new phenotype characterized by brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS) with biallelic CSF1R pathogenic variants in the etiology has been described.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (ARSs) catalyze the first step of protein biosynthesis (canonical function) and have additional (non-canonical) functions outside of translation. Bi-allelic pathogenic variants in genes encoding ARSs are associated with various recessive mitochondrial and multisystem disorders. We describe here a multisystem clinical phenotype based on bi-allelic mutations in the two genes (FARSA, FARSB) encoding distinct subunits for tetrameric cytosolic phenylalanyl-tRNA synthetase (FARS1).

View Article and Find Full Text PDF

Congenital cataract, which refers to lenticular opacity diagnosed at birth or more commonly during the first year of life, is one of the leading causes of childhood blindness. Molecular understanding of the disease pathogenesis has evolved thanks to many studies based on modern technologies. In this study, we aimed to identify and discuss the molecular etiology of nonsyndromic or nonmetabolic bilateral congenital cataract by whole-exome sequencing (WES).

View Article and Find Full Text PDF

Dysosteosclerosis (DOS) is a rare sclerosing bone dysplasia characterized by osteosclerosis and platyspondyly. DOS is genetically heterogeneous and causally associated with mutations in three genes, SLC29A3, CSF1R, and TNFRSF11A. TNFRSF11A has been known as the causal gene for osteopetrosis, autosomal recessive 7, and is recently reported to cause DOS in three cases, which show a complex genotype-phenotype relationship.

View Article and Find Full Text PDF

Acromesomelic dysplasia type Maroteaux (AMDM, OMIM #602875) is an autosomal recessive disorder characterized by severe short stature, shortened middle and distal segments of the limbs, redundant skin of fingers, radial head subluxation or dislocation, large great toes and cranium, and normal intelligence. Only the skeletal system appears to be consistently affected. AMDM is caused by biallelic loss-of-function variants in the natriuretic peptide receptor B (NPRB or NPR2, OMIM #108961) which is involved in endochondral ossification and longitudinal growth of limbs and vertebrae.

View Article and Find Full Text PDF