There is a gap in existing knowledge of stress-triggered neurochemical and behavioral adaptations in females. This study was designed to explore the short-term consequences of a single social defeat (SD) on accumbal dopamine (DA) dynamics and related behaviors in female Wistar rats. During the SD procedure, rats demonstrated different stress-handling strategies, which were defined as active and passive coping.
View Article and Find Full Text PDFBioorthogonal chemistry was deservedly recognized with the 2022 Nobel Prize in Chemistry, having transformed the way chemists and biologists interrogate biological systems in the past twenty years. This Voices piece asks researchers from a range of backgrounds: what are some major challenges and opportunities facing the field in coming years?
View Article and Find Full Text PDFEndothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo.
View Article and Find Full Text PDFHelicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity.
View Article and Find Full Text PDFMitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39.
View Article and Find Full Text PDFHelicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity.
View Article and Find Full Text PDFA series of S-alkyl substituted thioglycolurils was prepared through the alkylation of corresponding thioglycolurils with halogenoalkanes and tested for their fungicidal activity against six phytopathogenic fungi from different taxonomic classes: , , , , , and and two pathogenic yeasts: and . A number of S-alkyl substituted thioglycolurils exhibited high activity against and (85-100% mycelium growth inhibition), and moderate activity against other phytopathogens. S-Ethyl substituted thioglycolurils possessed a high activity against .
View Article and Find Full Text PDFTargeted protein degradation induced by heterobifunctional compounds and molecular glues presents an exciting avenue for chemical probe and drug discovery. To date, small-molecule ligands have been discovered for only a limited number of E3 ligases, which is an important limiting factor for realizing the full potential of targeted protein degradation. We report herein the discovery by chemical proteomics of azetidine acrylamides that stereoselectively and site-specifically react with a cysteine (C1113) in the E3 ligase substrate receptor DCAF1.
View Article and Find Full Text PDFThe nicotinamide adenine dinucleotide hydrolase (NADase) sterile alpha toll/interleukin receptor motif containing-1 (SARM1) acts as a central executioner of programmed axon death and is a possible therapeutic target for neurodegenerative disorders. While orthosteric inhibitors of SARM1 have been described, this multidomain enzyme is also subject to intricate forms of autoregulation, suggesting the potential for allosteric modes of inhibition. Previous studies have identified multiple cysteine residues that support SARM1 activation and catalysis, but which of these cysteines, if any, might be selectively targetable by electrophilic small molecules remains unknown.
View Article and Find Full Text PDFAn original method for the synthesis of 2-hydrazonoimidazo[4,5-]thiazolone derivatives has been developed based on a one-pot acid-induced sequence of hydrazone formation from 3-thioxoperhydroimidazo[4,5-]-1,2,4-triazinones and aromatic aldehydes, triazine ring contraction to imidazolidine one, and Dimroth-type N/S-interchange of -aminothioglycolurils formed into 2-hydrazonoimidazo[4,5-]thiazolones. 3-Phenylacroleine derivatives are also suitable substrates for the reaction with thioxoperhydroimidazotriazinones.
View Article and Find Full Text PDFDifferential amino acid reactivity with chemical probes can provide valuable information on the functionality and ligandability of proteins in native biological systems. Here, we present a quantitative, multiplexed chemical proteomic protocol for in-depth reactivity and ligandability profiling of cysteines in proteins in quiescent and stimulated T cells. This protocol illuminates dynamic immune state-dependent alterations in cysteine reactivity, revealing chemoselective and stereoselective small-molecule interactions with cysteines in structurally and functionally diverse proteins that lack chemical probes.
View Article and Find Full Text PDFAminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot-Marie-Tooth disease (CMT) and distal spinal muscular atrophy.
View Article and Find Full Text PDFCurrent methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound.
View Article and Find Full Text PDFRpn13 is one of several ubiquitin receptors in the 26S proteasome. Cys88 of Rpn13 has been proposed to be the principal target of RA190, an electrophilic small molecule with interesting anti-cancer activities. Here, we examine the claim that RA190 mediates its cytotoxic effects through engagement with Rpn13.
View Article and Find Full Text PDFElectrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules.
View Article and Find Full Text PDFThe emerging use of covalent ligands as chemical probes and drugs would benefit from an expanded repertoire of cysteine-reactive electrophiles for efficient and diverse targeting of the proteome. Here we use the endogenous electrophile sensor of mammalian cells, the KEAP1-NRF2 pathway, to discover cysteine-reactive electrophilic fragments from a reporter-based screen for NRF2 activation. This strategy identified a series of 2-sulfonylpyridines that selectively react with biological thiols via nucleophilic aromatic substitution (SAr).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2020
Target engagement assays are crucial for establishing the mechanism-of-action of small molecules in living systems. Integral membrane transporters can present a challenging protein class for assessing cellular engagement by small molecules. The chemical proteomic discovery of alpha-chloroacetamide (αCA) compounds that covalently modify cysteine-54 (C54) of the MPC2 subunit of the mitochondrial pyruvate carrier (MPC) is presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2019
Reversible covalency, achieved with, for instance, highly electron-deficient olefins, offers a compelling strategy to design chemical probes and drugs that benefit from the sustained target engagement afforded by irreversible compounds, while avoiding permanent protein modification. Reversible covalency has mainly been evaluated for cysteine residues in individual kinases and the broader potential for this strategy to engage cysteines across the proteome remains unexplored. Herein, we describe a mass-spectrometry-based platform that integrates gel filtration with activity-based protein profiling to assess cysteine residues across the human proteome for both irreversible and reversible interactions with small-molecule electrophiles.
View Article and Find Full Text PDFIt is known that trace amine-associated receptor 5 (TAAR5) is expressed in various regions of the central nervous system. However, very limited information is available on the behavioral effects of TAAR5 activation and the TAAR5 functional role, in general. We studied the effect of TAAR5 agonist (2-(alpha-naphthoyl) ethyltrimethylammonium iodide) systemic administration on animal behavior.
View Article and Find Full Text PDFDimethyl fumarate (DMF) is a prescribed treatment for multiple sclerosis and has also been used to treat psoriasis. The electrophilicity of DMF suggests that its immunosuppressive activity is related to the covalent modification of cysteine residues in the human proteome. Nonetheless, our understanding of the proteins modified by DMF in human immune cells and the functional consequences of these reactions remains incomplete.
View Article and Find Full Text PDFOvarian cancer is typified by the development of chemotherapy resistance. Chemotherapy resistance is associated with high aldehyde dehydrogenase (ALDH) enzymatic activity, increased cancer "stemness," and expression of the stem cell marker CD133. As such, ALDH activity has been proposed as a therapeutic target.
View Article and Find Full Text PDF