Pair-wise interactions at the single-molecule level can be done with nanoprobing techniques, such as AFM force spectroscopy, optical tweezers, and magnetic tweezers. These techniques can be used to probe interactions between well-characterized assemblies of biomolecules, such as monomer-dimer, dimer-dimer, and trimer-monomer. An important step of these techniques is the proper assembly of dimers, trimers, and higher oligomers to enable the interactions to be probed.
View Article and Find Full Text PDFSoluble amyloid-beta (Aβ) oligomers are the prime causative agents of cognitive deficits during early stages of Alzheimer's disease (AD). The transient nature of the oligomers makes them difficult to characterize by traditional techniques, suggesting that advanced approaches are necessary. Previously developed fluorescence-based tethered approach for probing intermolecular interactions (TAPIN) and AFM-based single-molecule force spectroscopy are capable of probing dimers of Aβ peptides.
View Article and Find Full Text PDFProbing of biomolecular complexes by single-molecule force spectroscopy (SMFS) methods including AFM requires proper and suitable coupling methods for immobilization of biomolecules onto the AFM tip and the surface. The use of flexible tethers for the coupling process has dual advantages. First, they allow the specific immobilization of interacting molecules, and second, their flexibility facilitates the proper orientation of the interacting partners.
View Article and Find Full Text PDFImmobilization is a key step involved in probing molecular interactions using single-molecule force spectroscopy methods, including atomic force microscopy (AFM). To our knowledge, we describe a novel approach termed flexible nanoarray (FNA) in which the interaction between the two internally immobilized amyloid β peptides is measured by pulling of the tether. The FNA tether was synthesized with nonnucleotide phosphoramidite monomers using the DNA synthesis chemistry.
View Article and Find Full Text PDFThis unit describes the chemical synthesis of 2'-deoxy-2'-fluoro-b-D-oligoarabinonucleotides (2'F-ANA), both with phosphodiester and phosphorothioate linkages. The protocols described herein include araF phosphoramidite preparation, assembly on DNA synthesizers, and final deprotection and purification of oligonucleotides.
View Article and Find Full Text PDFCurr Protoc Nucleic Acid Chem
November 2002
This unit describes in detail the preparation of protected 2'-deoxy-2'-fluoroarabinonucleosides. These building blocks are required for the synthesis of 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA), an oligonucleotide analog exhibiting very promising antisense properties. The preparation of phosphoramidites from these building blocks and the synthesis of 2'F-ANA are described elsewhere in the manual.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2003
Interesting and very promising antisense properties of 2'-deoxy-2'-fluoroarabinonucleic acids ((a) Wilds, C.J.; Damha, M.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2003
Oligonucleotide analogues comprised of 2'-deoxy-2'-fluoro-beta-D-arabinose units joined via P3'-N5' phosphoramidate linkages (2'F-ANA(5'N)) were prepared for the first time. Among the compounds prepared were a series of 2'OMe-RNA-[GAP]-2'OMe-RNA 'chimeras', whereby the "GAP" consisted of DNA, DNA(5'N), 2'F-ANA or 2'F-ANA(5'N) segments. The chimeras with the 2'F-ANA and DNA gaps exhibited the highest affinity towards a complementary RNA target, followed by the 5'-amino derivatives, i.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2003
We present procedures for nucleoside and oligonucleotide synthesis, binding affinity (Tm) and structural analysis (CD spectra) of 2'-deoxy-2',2''-difluoro-alpha-D-ribofuranosyl and 2'-deoxy-2',2''-difluoro-beta-D-ribofuranosyl oligothymidylates. Possible reasons for the thermal instability of duplexes formed between these compounds and RNA or DNA targets are discussed.
View Article and Find Full Text PDFThe ability of modified antisense oligonucleotides (AONs) containing acyclic interresidue units to support RNase H-promoted cleavage of complementary RNA is described. Manipulation of the backbone and sugar geometries in these conformationally labile monomers shows great benefits in the enzymatic recognition of the nucleic acid hybrids, while highlighting the importance of local strand conformation on the hydrolytic efficiency of the enzyme more conclusively. Our results demonstrate that the duplexes support remarkably high levels of enzymatic degradation when treated with human RNase HII, making them efficient mimics of the native substrates.
View Article and Find Full Text PDFThe design of new antisense oligomers with improved binding affinity for targeted RNA, while still activating RNase H, is a major research area in medicinal chemistry. RNase H recognizes the RNA-DNA duplex and cleaves the complementary mRNA strand, providing the main mechanism by which antisense oligomers elicit their activities. It has been shown that configuration inversion at the C2' position of the DNA sugar moiety (arabinonucleic acid, ANA), combined with the substitution of the 2'OH group by a fluorine atom (2'F-ANA) increases the oligomer's binding affinity for targeted RNA.
View Article and Find Full Text PDFChimeric oligonucleotides comprised of alternating residues of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (2'F-ANA) and DNA were synthesized and evaluated for an important antisense property-the ability to elicit ribonuclease H (RNase H) degradation of complementary RNA. Experiments used both human RNase HII and Escherichia coli RNase HI. Mixed backbone oligomers comprising alternating three-nucleotide segments of 2'F-ANA and three-nucleotide segments of DNA were the most efficient at eliciting RNase H degradation of target RNA, and were significantly better than oligonucleotides entirely composed of DNA, suggesting that these mixed backbone oligonucleotides may be potent antisense agents.
View Article and Find Full Text PDFPhosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications.
View Article and Find Full Text PDF