Severe adverse drug reactions (ADRs) are the fourth leading cause of fatality in the U.S. with more than 100,000 deaths per year.
View Article and Find Full Text PDFThis review is devoted to the critical analysis of advantages and disadvantages of existing mixture descriptors and their usage in various QSAR/QSPR tasks. We describe good practices for the QSAR modeling of mixtures, data sources for mixtures, a discussion of various mixture descriptors and their application, recommendations about proper external validation specific for mixture QSAR modeling, and future perspectives of this field. The biggest problem in QSAR of mixtures is the lack of reliable data about the mixtures' properties.
View Article and Find Full Text PDFBackground: Antiviral drugs are urgently needed for the treatment of acute and chronic diseases caused by enteroviruses such as coxsackievirus B3 (CVB3). The main goal of this study is quantitative structure-activity relationship (QSAR) analysis of anti-CVB3 activity (clinical CVB3 isolate 97927 [log IC50, µM]) and investigation of the selectivity of 25 ([biphenyloxy]propyl)isoxazoles, followed by computer-aided design and virtual screening of novel active compounds.
Discussion: The 2D QSAR obtained models are quite satisfactory (R(2) = 0.
This review explores the application of the Simplex representation of molecular structure (SiRMS) QSAR approach in antiviral research. We provide an introduction to and description of SiRMS, its application in antiviral research and future directions of development of the Simplex approach and the whole QSAR field. In the Simplex approach every molecule is represented as a system of different simplexes (tetratomic fragments with fixed composition, structure, chirality and symmetry).
View Article and Find Full Text PDF