Bacteriophages and phage enzymes are considered as possible alternatives to antibiotics in the treatment of infections caused by antibiotic-resistant bacteria. Due to the ability to cleave the capsular polysaccharides (CPS), one of the main virulence factors of , phage depolymerases, has potential in the treatment of infections. Here, we characterized in vivo two novel phage-encoded polysaccharide depolymerases as therapeutics against clinical isolates of .
View Article and Find Full Text PDFThe double-stranded DNA (dsDNA) bacteriophage vB_KpnM_KpV477, with a broad spectrum of lytic activity against , including strains of capsular serotypes K1, K2, and K57, was isolated from a clinical sample. The phage genome comprises 168,272 bp, with a G+C content of 39.3%, and it contains 275 putative coding sequences (CDSs) and 17 tRNAs.
View Article and Find Full Text PDFThe prevalence and characteristics of hypermucoviscous (HV) strains among Klebsiella pneumoniae isolated in Russian hospitals were investigated. The HV strains accounted for 11% of the K. pneumoniae isolates collected in the period from 2011 to 2016, and were characterized as belonging to the K1, K2, K20 and K57 serotypes.
View Article and Find Full Text PDFA novel bacteriophage, vB_KpnP_KpV289, lytic for hypermucoviscous strains of Klebsiella pneumoniae, was attributed to the family Podoviridae, subfamily Autographivirinae, genus T7likevirus based on transmission electron microscopy and genome analysis. The complete genome of the bacteriophage vB_KpnP_KpV289 consists of a linear double-stranded DNA of 41,054 bp including 179-bp direct-repeat sequences at the ends and 51 open reading frames (ORFs). The G+C content is 52.
View Article and Find Full Text PDF