The degradation of the mixture of steroid hormones including seven estrogens (17α-estradiol, 17β-estradiol, 17α-dihydroequilin, 17α-ethinyl estradiol, estriol, estrone and equilin) and five progestins (levonorgestrel, gestodene, trimegestrone, medrogestone and progesterone) by ozonation in aqueous solution is investigated. The ozonation process provides high removal (up to 100%) of hormones and estrogenicity in the treated water. Computational methods such as quantum chemistry calculations (QCCs) are applied to interpret the observed results.
View Article and Find Full Text PDFEstrone (E1), 17β-estradiol (E2), estriol (E3), equilin (EQ) and 17α-estradiol (17α) estrogen hormones are released by humans and animals and have been detected in the environment and municipal wastewater treatment plants. The structural and electronic properties of natural hormone molecules are investigated by performing density functional theory calculations and used to predict their properties and chemical behavior. Quantitative structure property relationship (QSPR) approach is applied to correlate the estrogenicity associated with the natural estrogen hormones according to their molecular properties.
View Article and Find Full Text PDFThe growing interest in sonochemistry as a tool for environmental remediation leads to the need for process optimization. Sonochemistry is a complex process, which depends on physical parameters and also on the process conditions. Physical parameters are interrelated and therefore a systematic approach has to be taken to optimize the process.
View Article and Find Full Text PDFThe nitric acid-functionalized commercial carbon nanofibers (CNFs) were comprehensively studied by instrumental (XRD, BET, SEM, TGA) and theoretical (DFT calculations) methods. The detailed surface study revealed the variation in the characteristics of functionalized CNFs, such as a decreased (up to 34%) surface area and impacted structural, electronic and chemical properties. The effects of functional groups were studied by comparison with pristine nanofibers.
View Article and Find Full Text PDFThe 4-hydroxy-5,5-dimethyl-2-trifluoromethylpyrroline-1-oxide (FDMPO) spin trap is very attractive for spin trapping studies due to its high stability and high reaction rates with various free radicals. However, the identification of FDMPO radical adducts is a challenging task since they have very comparable Electron Spin Resonance (ESR) spectra. Here we propose a new method for the analysis and interpretation of the ESR spectra of FDMPO radical adducts.
View Article and Find Full Text PDFThe effect of electrodialytic treatment in terms of a current density, pH and Na(2)H(2)EDTA addition on the methanogenic activity of copper-amended anaerobic granular sludge taken from the UASB reactor from paper mill was evaluated. Moreover, the specific energy consumption and simplified operational and treatment costs were calculated. Addition of Na(2)H(2)EDTA (at pH7.
View Article and Find Full Text PDFThe homolysis of peracetic acid (PAA) as a relevant source of free radicals (e.g., *OH) was studied in detail.
View Article and Find Full Text PDFThe kinetic study of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol in water was performed to qualitatively assess the effect of ultrasound on the process kinetics. Various kinetic parameters such as the apparent kinetic rate constants, the surface utilization coefficient and activation energy of phenol oxidation over RuI(3) catalyst were investigated. Comparative analysis revealed that the use of ultrasound irradiation reduced the energy barrier of the reaction but had no impact on the reaction pathway.
View Article and Find Full Text PDFElectro-Fenton denitrification of a model wastewater was studied using platinized titanium electrodes in a batch electrochemical reactor. The model wastewater was prepared from components based on the real aquaculture effluent with nitrate concentrations varying from 200 to 800 mg L(-1). The technical as well as scientific feasibility of the method was assessed by the relationship between the most significant process variables such as various Fenton's reagent to hydrogen peroxide ratios (1:5; 1:20 and 1:50) and current densities (0.
View Article and Find Full Text PDFRu-based catalysts gained popularity because of their applicability for a variety of processes, including carbon monoxide oxidation, wet air catalytic oxidation and wastewater treatment. The focus of a current study was generation of hydroxyl radicals in the wet peroxide system catalyzed by heterogeneous ruthenium, spin-trapped by DEPMPO and DIPPMPO by means of electron spin resonance spin-trapping technique (ESR ST). The mechanism of free radicals formation was proposed via direct cleavage of hydrogen peroxide over ruthenium active sites.
View Article and Find Full Text PDFThe use of low-frequency (10-60 kHz) ultrasound for enhancement of various biotechnological processes has received increased attention over the last decade as a rapid and reagentless method. Recent breakthroughs in sonochemistry have made the ultrasound irradiation procedure more feasible for a broader range of applications. By varying the sonication parameters, various physical, chemical and biological effects can be achieved that can enhance the target processes in accordance with the applied conditions.
View Article and Find Full Text PDFNovel catalytic adsorbent (ruthenium on carbon) was employed for the treatment of pulp mill effluent in the presence of hydrogen peroxide. Mathematical model and optimization of the process regarding the most favorable COD (%), TOC (%) and color (%) removal rates was developed and performed with experimental design taking into account catalytic adsorption process kinetics. As the initial experimental design, 3(3-1) half-fractional factorial design (H-FFD) was accomplished at two levels to study the significance of the main effects, such as catalytic adsorbent (g l(-1)) and hydrogen peroxide (ppm) concentrations using the response surface methodology (RSM).
View Article and Find Full Text PDF