The transforming growth factor β (TGF-β)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-β/ALK1/ENG signaling influences angiogenic properties of these cells in HHT.
View Article and Find Full Text PDFSepsis is associated with profound immune dysregulation that increases the risk for life-threatening secondary infections: Dendritic cells (DCs) undergo functional reprogramming due to yet unknown changes during differentiation in the bone marrow (BM). In parallel, lymphopenia and exhaustion of T lymphocytes interfere with antigen-specific adaptive immunity. We hypothesized that there exists a link between T cells and the modulation of DC differentiation in the BM during murine polymicrobial sepsis.
View Article and Find Full Text PDFTumor-draining lymph nodes (LNs) play a crucial role during cancer spread and in initiation of anti-cancer adaptive immunity. Neutrophils form a substantial population of cells in LNs with poorly understood functions. Here, we demonstrate that, during head and neck cancer (HNC) progression, tumor-associated neutrophils transmigrate to LNs and shape anti-tumor responses in a stage-dependent manner.
View Article and Find Full Text PDFTumor-draining lymph nodes (TDLNs) are the first organs where the metastatic spread of different types of cancer, including head and neck cancer (HNC), occurs and have therefore high prognostic relevance. Moreover, first anti-cancer immune responses have been shown to be initiated in such LNs tumor-educated myeloid cells. Among myeloid cells present in TDLNs, neutrophils represent a valuable population and considerably participate in the activation of effector lymphocytes there.
View Article and Find Full Text PDFAngiogenesis, the formation of new blood vessels from already existing vasculature, is tightly regulated by pro- and anti-angiogenic stimuli and occurs under both physiological and pathological conditions. Tumor angiogenesis is central for tumor development, and an "angiogenic switch" could be initiated by multiple immune cells, such as neutrophils. Tumor-associated neutrophils promote tumor angiogenesis by the release of both conventional and non-conventional pro-angiogenic factors.
View Article and Find Full Text PDFAngiogenesis plays an important role during tumor growth and metastasis. We could previously show that Type I interferon (IFN)-deficient tumor-associated neutrophils (TANs) show strong pro-angiogenic activity, and stimulate tumor angiogenesis and growth. However, the exact mechanism responsible for their pro-angiogenic shift is not clear.
View Article and Find Full Text PDFThe role of neutrophils during cancer formation and elimination is diverse. Here, for the first time, we investigate neutrophil helper cells (N), their influence on B cell activity in the regional lymph nodes (RLN) of head-and-neck cancer patients and the effect of this neutrophil/B cell interaction on patient prognosis. Circulating and RLN neutrophils of patients with stage I-IV head-and-neck squamous cell carcinoma were investigated with flow cytometry and qPCR.
View Article and Find Full Text PDFThe composition of the oral milieu reflects oral health. Saliva provides an environment for multiple microorganisms, and contains soluble factors and immune cells. Neutrophils, which rapidly react on the changes in the microenvironment, are a major immune cell population in saliva and thus may serve as a biomarker for oral pathologies.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is characterized by mucocutaneous telangiectases and visceral vascular malformations. Individuals suffering from HHT have a significantly increased risk of bacterial infections, but the mechanisms involved in this are not clear. White blood cell subpopulations were estimated with flow cytometry in 79 patients with HHT and 45 healthy individuals, and association with clinicopathological status was assessed.
View Article and Find Full Text PDFGranulocyte-colony stimulating factor (G-CSF)/nicotinamide phosphoribosyltransferase (NAMPT) signaling has been shown to be crucial for the modulation of neutrophil development and functionality. As this signaling pathway is significantly suppressed by type I interferons (IFNs), we aimed to study how the regulation of neutrophil differentiation and phenotype is altered in IFN-deficient mice during granulopoiesis. The composition of bone marrow granulocyte progenitors and their expression were assessed in bone marrow of type I IFN receptor knockout ( mice and compared to wild-type animals.
View Article and Find Full Text PDFis an opportunistic multidrug-resistant pathogen, able to grow in biofilms. It causes life-threatening complications in diseases characterized by the up-regulation of type I interferon (IFN) signaling, such as cancer or viral infections. Since type I IFNs regulate multiple functions of neutrophils, which constitute the first line of anti-bacterial host defense, in this work we aimed to study how interferon-activated neutrophils influence the course of infection of the lung.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) represent web-like structures consisting of externalized DNA decorated with granule proteins that are responsible for trapping and killing bacteria. However, undesirable effects of NET formation during carcinogenesis, such as metastasis support, have been described. In the present study, we evaluated the correlation between NETosis and disease progression in head and neck cancer (HNC) patients in order to establish a valid biomarker for an early detection and monitoring of HNC progression.
View Article and Find Full Text PDFThe contribution of neutrophils to the regulation of tumorigenesis is getting increased attention. These cells are heterogeneous, and depending on the tumor milieu can possess pro- or anti-tumor capacity. One of the important cytokines regulating neutrophil functions in a tumor context are type I interferons.
View Article and Find Full Text PDFTumor-associated neutrophils (TANs) regulate many processes associated with tumor progression, and depending on the microenvironment, they can exhibit pro- or antitumor functions. However, the molecular mechanisms regulating their tumorigenicity are not clear. Using transplantable tumor models, we showed here that nicotinamide phosphoribosyltransferase (NAMPT), a molecule involved in CSF3R downstream signaling, is essential for tumorigenic conversion of TANs and their pro-angiogenic switch.
View Article and Find Full Text PDFType I interferons (IFNs) were first characterized in the process of viral interference. However, since then, IFNs are found to be involved in a wide range of biological processes. In the mouse, type I IFNs comprise a large family of cytokines.
View Article and Find Full Text PDFObjective. Immune processes play a significant role in atherosclerosis plaque progression. Regulatory T cells and T helpers 17 were shown to possess anti- and pro-atherogenic activity, respectively.
View Article and Find Full Text PDFRapamycin contributes to the expansion of regulatory T cells (Tregs) in vitro. We investigated CD4(+)CD25(high)CD127(low) Treg level dynamics as well as the major parameters of cell immunity and sCD25 and highly sensitive C-reactive protein (hsCRP) concentrations in the blood of patients after coronary stenting (CS) with sirolimus (rapamycin)-eluting stents (SES; n = 43). The relation between initial Treg values and the severity of coronary atherosclerosis was observed.
View Article and Find Full Text PDF