Functional divergence of transcription factors (TFs) has driven cellular and organismal complexity throughout evolution, but its mechanistic drivers remain poorly understood. Here we test for new mechanisms using CORONA (CNA) and PHABULOSA (PHB), two functionally diverged paralogs in the CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) family of TFs. We show that virtually all genes bound by PHB ( ~ 99%) are also bound by CNA, ruling out occupation of distinct sets of genes as a mechanism of functional divergence.
View Article and Find Full Text PDFThe bacterial flagellum, which facilitates motility, is composed of ~20 structural proteins organized into a long extracellular filament connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Flagellum assembly is regulated by multiple checkpoints that ensure an ordered gene expression pattern coupled to the assembly of the various building blocks. Here, we use epifluorescence, super-resolution, and transmission electron microscopy to show that the absence of a periplasmic protein (FlhE) prevents proper flagellar morphogenesis and results in the formation of periplasmic flagella in Salmonella enterica.
View Article and Find Full Text PDFThe bacterial flagellum is an organelle utilized by many Gram-negative bacteria to facilitate motility. The flagellum is composed of a several µm long, extracellular filament that is connected to a cytoplasmic rotor-stator complex via a periplasmic rod. Composed of ∼20 structural proteins, ranging from a few subunits to several thousand building blocks, the flagellum is a paradigm of a complex macromolecular structure that utilizes a highly regulated assembly process.
View Article and Find Full Text PDFWe found that in contrast to the best-studied model organisms, such as and , most bacterial and archaeal species have a CheA protein with a different domain composition. We report variations in CheA architecture, such as domain duplication and acquisition as well as class-specific domain composition. Our results will be of interest to those working on signal transduction in bacteria and archaea and lay the foundation for experimental studies.
View Article and Find Full Text PDFChemosensory systems in bacteria and archaea are complex, multi-protein pathways that enable rapid cellular responses to environmental changes. The CheA histidine kinase is a central component of chemosensory systems. In contrast to other histidine kinases, it lacks a sensor (input) domain and utilizes dedicated chemoreceptors for sensing.
View Article and Find Full Text PDFIn plastids, conversion of light energy into ATP relies on cytochrome f, a key electron carrier with a heme covalently attached to a CXXCH motif. Covalent heme attachment requires reduction of the disulfide-bonded CXXCH by CCS5 and CCS4. CCS5 receives electrons from the oxidoreductase CCDA, while CCS4 is a protein of unknown function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
Mutations in signal transduction pathways lead to various diseases including cancers. MEK1 kinase, encoded by the human gene, is one of the central components of the MAPK pathway and more than a hundred somatic mutations in the gene were identified in various tumors. Germline mutations deregulating MEK1 also lead to congenital abnormalities, such as the cardiofaciocutaneous syndrome and arteriovenous malformation.
View Article and Find Full Text PDFCampylobacter jejuni responds to extracellular stimuli via transducer-like chemoreceptors (Tlps). Here, we describe receptor-ligand interactions of a unique paralogue family of dCache_1 (double lcium channels and motaxis) chemoreceptors: Tlp2, Tlp3, and Tlp4. Phylogenetic analysis revealed that Tlp2, Tlp3, and Tlp4 receptors may have arisen through domain duplications, followed by a divergent evolutionary drift, with Tlp3 emerging more recently, and unexpectedly, responded to glycans, as well as multiple organic and amino acids with overlapping specificities.
View Article and Find Full Text PDFMaintaining cell envelope integrity is of vital importance for all microorganisms. Not surprisingly, evolution has shaped conserved protein protection networks that connect stress perception, transmembrane signal transduction, and mediation of cellular responses upon cell envelope stress. The phage shock protein (Psp) stress response is one such conserved protection network.
View Article and Find Full Text PDFSignificanceAmino acids are the building blocks of life and important signaling molecules. Despite their common structure, no universal mechanism for amino acid recognition by cellular receptors is currently known. We discovered a simple motif, which binds amino acids in various receptor proteins from all major life-forms.
View Article and Find Full Text PDFPollen apertures are an interesting model for the formation of specialized plasma-membrane domains. The plant-specific protein INP1 serves as a key aperture factor in such distantly related species as Arabidopsis, rice and maize. Although INP1 orthologues probably play similar roles throughout flowering plants, they show substantial sequence divergence and often cannot substitute for each other, suggesting that INP1 might require species-specific partners.
View Article and Find Full Text PDFChemosensory system is the most complex, specialized mode of signal transduction in bacteria and archaea. It is composed of several core and auxiliary protein components that are highly organized in order to deliver a fast response to changing environmental conditions. Chemosensory pathways were studied in-depth in a handful of model organisms and experimentally characterized at least to some degree in approximately thirty other species.
View Article and Find Full Text PDFis a bacterial pathogen that is a common cause of enteritis in humans. We identified a previously uncharacterized type of sensory domain in the periplasmic region of the chemoreceptor Tlp10, termed the DAHL domain, that is predicted to have a bimodular helical architecture. Through two independent ligand-binding sites in this domain, Tlp10 responded to molecular aspartate, isoleucine, fumarate, malate, fucose, and mannose as attractants and to arginine, galactose, and thiamine as repellents.
View Article and Find Full Text PDFThe only universally conserved family of transcription factors comprises housekeeping regulators and their specialized paralogs, represented by well-studied NusG and RfaH. Despite their ubiquity, little information is available on the evolutionary origins, functions, and gene targets of the NusG family members. We built a hidden Markov model profile of RfaH and identified its homologs in sequenced genomes.
View Article and Find Full Text PDFComplex chemosensory systems control multiple biological functions in bacteria, such as chemotaxis, gene regulation, and cell cycle progression. Many species contain more than one chemosensory system per genome, but little is known about their potential interplay. In this study, we reveal cross talk between two chemosensory pathways that modulate chemotaxis and biofilm formation in We demonstrate that some chemoreceptors that govern chemotaxis also contribute to biofilm formation and these chemoreceptors can physically interact with components of both pathways.
View Article and Find Full Text PDF