Joint-resident chondrogenic precursor cells have become a significant therapeutic option due to the lack of regenerative capacity in articular cartilage. Progenitor cells are located in the superficial zone of the articular cartilage, producing lubricin/Prg4 to decrease friction of cartilage surfaces during joint movement. Prg4-positive progenitors are crucial in maintaining the joint's structure and functionality.
View Article and Find Full Text PDFHuman Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest in tissue engineering. We obtained hWJ-MSCs from four patients, and then we stimulated their chondrogenic phenotype formation in vitro by adding resveratrol (during cell expansion) and a canonical Wnt pathway activator, LiCl, as well as a Rho-associated protein kinase inhibitor, Y27632 (during differentiation). The effects of the added reagents on the formation of hWJ-MSC sheets destined to repair osteochondral injuries were investigated.
View Article and Find Full Text PDFA pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagnostic methods are used. Unfortunately, they all have several limitations which frequently make prompt and accurate diagnosis impossible.
View Article and Find Full Text PDFDamaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs.
View Article and Find Full Text PDFArticular cartilage is a highly organized tissue that has a limited ability to heal. Tissue engineering is actively exploited for joint tissue reconstruction in numerous cases of articular cartilage degeneration associated with trauma, arthrosis, rheumatoid arthritis, and osteoarthritis. However, the optimal scaffolds for cartilage repair are not yet identified.
View Article and Find Full Text PDFGrowth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes.
View Article and Find Full Text PDFWith very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions.
View Article and Find Full Text PDFArticular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice.
View Article and Find Full Text PDFThere are several pitfalls associated with research based on transgenic mice. Here, we describe our interpretation and analysis of mTORC1 activation in growth plate chondrocytes and compare these to a recent publication (Yan et al., Nature Communications 2016, 7:11151).
View Article and Find Full Text PDFBrain stroke continues to claim the lives of million people every year. To build the effective strategies for stroke treatment it is necessary to understand the neuroprotective mechanisms that are able to prevent the ischemic injury. Consisting of the ACTH fragment and the tripeptide Pro-Gly-Pro (PGP), the synthetic peptide Semax effectively protects brain against ischemic stroke.
View Article and Find Full Text PDFBackground: The nootropic neuroprotective peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) has proved efficient in the therapy of brain stroke; however, the molecular mechanisms underlying its action remain obscure. Our genome-wide study was designed to investigate the response of the transcriptome of ischemized rat brain cortex tissues to the action of Semax in vivo.
Results: The gene-expression alteration caused by the action of the peptide Semax was compared with the gene expression of the "ischemia" group animals at 3 and 24 h after permanent middle cerebral artery occlusion (pMCAO).
The synthetic peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is used successfully in acute stroke therapy. In spite of numerous studies on the subject, many aspects of the neuroprotective effects of the peptide remain unknown. We studied the action of Semax and its C-terminal tripeptide Pro-Gly-Pro on the expression of the VEGF gene family (Vegf-a, Vegf-b, Vegf-c, Vegf-d, and Plgf) and their receptors (Vegfr-1, Vegfr-2, and Vegfr-3) in the frontoparietal cortex region of the rat brain at 3, 24, and 72 h after permanent left middle cerebral artery occlusion (pMCAO).
View Article and Find Full Text PDF