Objectives: Previous studies have shown that the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (preSMA) play an important role in motor inhibitory control. The aim of the study was to use theta frequency transcranial alternating current stimulation (tACS) to modulate brain activity in the rIFG and preSMA and to test the effects of stimulation using a motor response inhibition task.
Methods: In four sessions, 20 healthy participants received tACS at 6 Hz over preSMA or rIFG, or 20 Hz over rIFG (to test frequency specificity), or sham stimulation before task processing.
Childhood absence epilepsy (CAE), involves 3 Hz generalized spikes and waves discharges (GSWDs) on the electroencephalogram (EEG), associated with ictal discharges (seizures) with clinical symptoms and impairment of consciousness and subclinical discharges without any objective clinical symptoms or impairment of consciousness. This study aims to comparatively characterize neuronal networks underlying absence seizures and subclinical discharges, using source localization and functional connectivity (FC), to better understand the pathophysiological mechanism of these discharges. Routine EEG data from 12 CAE patients, consisting of 45 ictal and 42 subclinical discharges were selected.
View Article and Find Full Text PDFObjective: Childhood absence epilepsy (CAE) is a disease with distinct seizure semiology and electroencephalographic (EEG) features. Differentiating ictal and subclinical generalized spikes and waves discharges (GSWDs) in the EEG is challenging, since they appear to be identical upon visual inspection. Here, spectral and functional connectivity (FC) analyses were applied to routine EEG data of CAE patients, to differentiate ictal and subclinical GSWDs.
View Article and Find Full Text PDFIn Autism Spectrum Disorders (ASD), impaired response inhibition and lack of adaptation are hypothesized to underlie core ASD symptoms, such as social communication and repetitive, stereotyped behavior. Thus, the aim of the present study was to compare neural correlates of inhibition, post-error adaptation, and reaction time variability in ASD and neuro-typical control (NTC) participants by investigating possible differences in error-related changes of oscillatory MEG activity. Twelve male NTC (mean age 20.
View Article and Find Full Text PDFIntroduction: Previous work in the language domain has shown that 10 Hz rTMS of the left or right posterior inferior frontal gyrus (pIFG) in the prefrontal cortex impaired phonological decision-making, arguing for a causal contribution of the bilateral pIFG to phonological processing. However, the neurophysiological correlates of these effects are unclear. The present study addressed the question whether neural activity in the prefrontal cortex could be modulated by 10 Hz tACS and how this would affect phonological decisions.
View Article and Find Full Text PDFIn children and adolescents, 1 mA transcranial direct current stimulation (tDCS) may cause "paradoxical" effects compared with adults: both 1 mA anodal and cathodal tDCS increase amplitude of the motor evoked potential (MEP) as revealed by a single pulse transcranial magnetic stimulation (TMS) of the motor cortex. Here, EEG based evoked potentials induced by a single pulse TMS, particularly the N100 component as marker of motor cortex inhibition, were investigated in order to explain effects of tDCS on the developing brain. In nineteen children and adolescents (11-16 years old), 1 mA anodal, cathodal, or sham tDCS was applied over the left primary motor cortex for 10 min.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a promising and well-tolerated method of non-invasive brain stimulation, by which cortical excitability can be modulated. However, the effects of tDCS on the developing brain are still unknown, and knowledge about its tolerability in children and adolescents is still lacking. Safety and tolerability of tDCS was assessed in children and adolescents by self-reports and spectral characteristics of electroencephalogram (EEG) recordings.
View Article and Find Full Text PDFObjective: The aim of the present study was to investigate the effect of the transcranial direct current stimulation (tDCS) on motor cortex excitability in healthy children and adolescents.
Methods: We applied 1mA anodal or cathodal tDCS for 10min on the left primary motor cortex of 19 healthy children and adolescents (mean age 13.9±0.