Publications by authors named "Ekaterina Lebed"

The energetic demands of modern society for clean energy vectors, such as H, have caused a surge in research associated with homogeneous and immobilized electrocatalysts that may replace Pt. In particular, clathrochelates have shown excellent electrocatalytic properties for the hydrogen evolution reaction (HER). However, the actual mechanism for the HER catalyzed by these -metal complexes remains an open debate, which may be addressed via Operando spectroelectrochemistry.

View Article and Find Full Text PDF

Kinetics and thermodynamics of the template synthesis and of the acidic decomposition of the methylboron-capped iron(II) tris-1,2-dioximates-the clathrochelate derivatives of six (nioxime)- and eight (octoxime)-membered alicyclic ligand synthons-were compared. In the case of a macrobicyclic iron(II) tris-nioximate, the plausible pathway of its formation contains a rate-determining stage and includes a reversible formation of an almost trigonal-antiprismatic (TAP) protonated tris-complex, followed by its monodeprotonation and addition of CHB(OH). Thus, the formed TAP intermediate undergoes a multistep rate-determining stage of double cyclization with the elimination of two water molecules accompanied by a structural rearrangement, thus giving an almost trigonal-prismatic (TP) iron(II) semiclathrochelate.

View Article and Find Full Text PDF

A new approach for performing Suzuki-Miyaura and Sonogashira reactions of iron(ii) dihalogenoclathrochelates, optimizing their reaction conditions (such as temperature, solvent and a palladium-containing catalyst) and the nature of other reagents (such as arylboron components) is elaborated. These palladium-catalyzed reactions are very sensitive to the nature of the macrobicyclic substrates. The reactivity of the leaving halogen atoms correlates with their ability to undergo an oxidative addition, decreasing in the order: I > Br > Cl, and iron(ii) diiodoclathrochelate underwent these C-C cross-couplings under their "classical" conditions.

View Article and Find Full Text PDF

Monoribbed-substituted mono- and dicyano-functionalized iron(II) macrobicycles were obtained for the first time by the reaction of iron(II) diiodoclathrochelate precursor with copper(I) cyanide-triphenylphosphine complex under mild conditions. The target dinitrile clathrochelate is a minor product of this reaction, whereas the major product contains only one cyano group. The clathrochelates obtained were characterized using elemental analysis, (1)H and (13)C{(1)H} NMR, IR and UV-vis spectroscopy, MALDI-TOF spectrometry and X-ray diffraction crystallography.

View Article and Find Full Text PDF