Myocardial fibrosis is a major pathologic disorder associated with a multitude of cardiovascular diseases (CVD). The pathogenesis is complex and encompasses multiple molecular pathways. Integration of fibrosis-associated genes into the global MetaCore network of protein-protein interactions (PPI) offers opportunities to identify PPI with functional and therapeutic significance.
View Article and Find Full Text PDFRare endocrine cancers such as Adrenocortical Carcinoma (ACC) present a serious diagnostic and prognostication challenge. The knowledge about ACC pathogenesis is incomplete, and patients have limited therapeutic options. Identification of molecular drivers and effective biomarkers is required for timely diagnosis of the disease and stratify patients to offer the most beneficial treatments.
View Article and Find Full Text PDFProtein-protein interactions is a longstanding challenge in cardiac remodeling processes and heart failure. Here, we use the MetaCore network and the Google matrix algorithms for prediction of protein-protein interactions dictating cardiac fibrosis, a primary cause of end-stage heart failure. The developed algorithms allow identification of interactions between key proteins and predict new actors orchestrating fibroblast activation linked to fibrosis in mouse and human tissues.
View Article and Find Full Text PDFBackground: Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment.
Methods And Findings: We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years.
Dysregulation of signaling pathways in multiple sclerosis (MS) can be analyzed by phosphoproteomics in peripheral blood mononuclear cells (PBMCs). We performed in vitro kinetic assays on PBMCs in 195 MS patients and 60 matched controls and quantified the phosphorylation of 17 kinases using xMAP assays. Phosphoprotein levels were tested for association with genetic susceptibility by typing 112 single-nucleotide polymorphisms (SNPs) associated with MS susceptibility.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2017
Objective: To identify differences in the metabolomic profile in the serum of patients with multiple sclerosis (MS) compared to controls and to identify biomarkers of disease severity.
Methods: We studied 2 cohorts of patients with MS: a retrospective longitudinal cohort of 238 patients and 74 controls and a prospective cohort of 61 patients and 41 controls with serial serum samples. Patients were stratified into active or stable disease based on 2 years of prospective assessment accounting for presence of clinical relapses or changes in disability measured with the Expanded Disability Status Scale (EDSS).
Nowadays, the personalized approach to health care and cancer care in particular is becoming more and more popular and is taking an important place in the translational medicine paradigm. In some cases, detection of the patient-specific individual mutations that point to a targeted therapy has already become a routine practice for clinical oncologists. Wider panels of genetic markers are also on the market which cover a greater number of possible oncogenes including those with lower reliability of resulting medical conclusions.
View Article and Find Full Text PDFCollagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology.
View Article and Find Full Text PDFThe pathogenesis of multiple sclerosis (MS) involves alterations to multiple pathways and processes, which represent a significant challenge for developing more-effective therapies. Systems biology approaches that study pathway dysregulation should offer benefits by integrating molecular networks and dynamic models with current biological knowledge for understanding disease heterogeneity and response to therapy. In MS, abnormalities have been identified in several cytokine-signaling pathways, as well as those of other immune receptors.
View Article and Find Full Text PDFOne of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA) which identifies gene subnetworks with significant concordant changes in expression between two conditions.
View Article and Find Full Text PDFElucidation of new biomarkers and potential drug targets from high-throughput profiling data is a challenging task due to a limited number of available biological samples and questionable reproducibility of differential changes in cross-dataset comparisons. In this paper we propose a novel computational approach for drug and biomarkers discovery using comprehensive analysis of multiple expression profiling datasets.The new method relies on aggregation of individual profiling experiments combined with leave-one-dataset-out validation approach.
View Article and Find Full Text PDFJ Bioinform Comput Biol
June 2010
Heterogeneous high-throughput biological data become readily available for various diseases. The amount of data points generated by such experiments does not allow manual integration of the information to design the most optimal therapy for a disease. We describe a novel computational workflow for designing therapy using Ariadne Genomics Pathway Studio software.
View Article and Find Full Text PDFMicroarray-based expression profiling of living systems is a quick and inexpensive method to obtain insights into the nature of various diseases and phenotypes. A typical microarray profile can yield hundreds or even thousands of differentially expressed genes and finding biologically plausible themes or regulatory mechanisms underlying these changes is a non-trivial and daunting task. We describe a novel approach for systems-level interpretation of microarray expression data using a manually constructed "overview" pathway depicting the main cellular signaling channels (Atlas of Signaling).
View Article and Find Full Text PDFImportance Of The Field: Drug discovery and development is a very complex and costly process. Understanding the detailed molecular mechanisms of a disease and drug actions can make it more efficient not only for new target discovery but also for lead prioritization, drug repositioning and development of biomarkers for drug efficacy and safety. Access to formalized knowledge about functions of proteins and small molecules is crucial for rationalization of the drug development process, and scientific publications are the main source of this knowledge.
View Article and Find Full Text PDFBackground: Molecular evolution is usually described assuming a neutral or weakly non-neutral substitution model. Recently, new data have become available on evolution of sequence regions under a selective pressure, e.g.
View Article and Find Full Text PDFMotivation: Although a great deal of progress is being made in the development of fast and reliable experimental techniques to extract genome-wide networks of protein-protein and protein-DNA interactions, the sequencing of new genomes proceeds at an even faster rate. That is why there is a considerable need for reliable methods of in-silico prediction of protein interaction based solely on sequence similarity information and known interactions from well-studied organisms. This problem can be solved if a dependency exists between sequence similarity and the conservation of the proteins' functions.
View Article and Find Full Text PDFBackground: Scientific literature is a source of the most reliable and comprehensive knowledge about molecular interaction networks. Formalization of this knowledge is necessary for computational analysis and is achieved by automatic fact extraction using various text-mining algorithms. Most of these techniques suffer from high false positive rates and redundancy of the extracted information.
View Article and Find Full Text PDFIn bioinformatics, binding of transcription regulatory factors to the cognate binding sites is usually described by sequence-specific binding energy, which is estimated from a training sample of sites. This model implies that all binding sites with binding energy above some threshold are functional and site sequence variations should be considered neutral until they do not reduce this energy below the threshold. To quantify this energy, the binding profile (positional weight matrix, PWM) model or consensus-based model is usually applied.
View Article and Find Full Text PDF