Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity.
View Article and Find Full Text PDFEmerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices.
View Article and Find Full Text PDFComplex oxides show a vast range of functional responses, unparalleled within the inorganic solids realm, making them promising materials for applications as varied as next-generation field-effect transistors, spintronic devices, electro-optic modulators, pyroelectric detectors, or oxygen reduction catalysts. Their stability in ambient conditions, chemical versatility, and large susceptibility to minute structural and electronic modifications make them ideal subjects of study to discover emergent phenomena and to generate novel functionalities for next-generation devices. Recent advances in the synthesis of single-crystal, freestanding complex oxide membranes provide an unprecedented opportunity to study these materials in a nearly-ideal system (e.
View Article and Find Full Text PDFThe rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics.
View Article and Find Full Text PDFWhen approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS). Our first-principles calculations show that incorporation of oxygen into the TaS crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS.
View Article and Find Full Text PDFOptical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs.
View Article and Find Full Text PDFWe have investigated the structure of atomic defects within monolayer NbSe encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe lattice stabilizing Se divacancies.
View Article and Find Full Text PDFSuperconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity.
View Article and Find Full Text PDF