The possibility of using colloidal lithography at the industrial level depends on the ability to form defect-free coatings over large areas. The spin-coating method has not yet shown acceptable results, but a more detailed studying of the regularities of this process may improve the quality of masks. The Langmuir-Blodgett method is expected to be the most preferable for forming high-quality large-scale monolayers.
View Article and Find Full Text PDFThis work is devoted to the development of nanosphere lithography (NSL) technology, which is a low-cost and efficient method to form nanostructures for nanoelectronics, as well as optoelectronic, plasmonic and photovoltaic applications. Creating a nanosphere mask by spin-coating is a promising, but not sufficiently studied method, requiring a large experimental base for different sizes of nanospheres. So, in this work, we investigated the influence of the technological parameters of NSL by spin-coating on the substrate coverage area by a monolayer of nanospheres with a diameter of 300 nm.
View Article and Find Full Text PDFIn this work, we demonstrate the high efficiency of optical emission spectroscopy to estimate the etching profile of silicon structures in SF/CF/O plasma. The etching profile is evaluated as a ratio of the emission intensity of the oxygen line (778.1 nm) to the fluorine lines (685.
View Article and Find Full Text PDFIn this work, we demonstrate an effective way of deep (30 µm depth), highly oriented (90° sidewall angle) structures formation with sub-nanometer surface roughness (R = 0.7 nm) in silicon carbide (SiC). These structures were obtained by dry etching in SF/O inductively coupled plasma (ICP) at increased substrate holder temperatures.
View Article and Find Full Text PDF