It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions.
View Article and Find Full Text PDFFront Genet
September 2022
Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization.
View Article and Find Full Text PDFIntroduction: , a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation.
View Article and Find Full Text PDFObjective: Glioma is a highly invasive tumor, frequently disposed in essential areas of the brain, which makes its surgical excision extremely difficult; meanwhile adjuvant therapy remains quite ineffective.
Methods: In the current report, a new therapeutic approach in curing malignant neoplasms has been performed on the U87 human glioblastoma model. This approach, termed "Karanahan", is aimed at the eradication of cancer stem cells (CSCs), which were recently shown to be capable of internalizing fragments of extracellular double-stranded DNA.
Background/aim: We compared the therapeutic efficacy of two recently developed experimental anticancer technologies: 1) in situ vaccination based on local immunotherapy with CpG oligonucleotides and anti-OX40 antibodies to activate antitumor immune response and 2) "Karanahan" technology [from the Sanskrit kāraṇa ('source') + han ('to kill')] based on the combined injection of cyclophosphamide and double-stranded DNA to eradicate cancer stem cells.
Materials And Methods: The anticancer approaches were compared on three types of mouse malignant tumors with different grades of immunogenicity: weakly immunogenic carcinoma Krebs-2, moderately immunogenic Lewis carcinoma, and highly immunogenic A20 В-cellular lymphoma.
Results: Our results indicated that in situ vaccination was the most effective against the highly immunogenic tumor А20.
The Purpose Of The Article: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation.
Materials And Methods: Experimental animals were irradiated on the γ-emitter (Cs) with a dose of 9.
Anticancer Res
February 2020
Background/aim: We previously have described the "3+1" tumors cure approach consisting of individual time schedule of cyclophosphamide and dsDNA preparation administrations. The aim of the study was to adapt the "3+1" approach based on eradication of cancer stem cells to the model of murine ascitic cyclophosphamide-resistant lymphosarcoma (RLS).
Materials And Methods: Adaptation of the "3+1" approach includes the identification of the timing to disrupt the tumorigenic potential of a certain tumor.
Background/aim: Oncolytic adenoviruses are promising therapeutic agents against both the bulk of tumor cells and cancer stem cells. The present study intended to test the oncolytic capability of adenovirus serotype 6 (Ad6), which has a lower seroprevalence and hepatotoxicity relatively to adenovirus 5 (Ad5), against the glioblastoma and its cancer stem cells.
Materials And Methods: Oncolytic efficacy of Ad6 was compared to widespread Ad5 both in vitro and in vivo, using the U87 and U251 human glioblastoma cell lines and subcutaneously transplanted U87 cells in SCID mice, respectively.
The present study demonstrates that monocyte-derived dendritic cells (moDCs) produced in vitro using a GM-CSF and IFN-α differentiation protocol encompass a rare (∼5%) subpopulation of cells showing classical dendritic cell morphology and capable of natural internalization of extracellular self-DNA. We established that DEFB, HMGB1, LL-37 and RAGE antigens, which mediate the process of DNA internalization, are expressed on the surface of moDCs similar to plasmacytoid dendritic cells. However, in constrast to the latter subpopulation, these cells do not produce interleukin (IL)-37.
View Article and Find Full Text PDFMurine Krebs-2 tumor-initiating stem cells are known to natively internalize extracellular double-stranded DNA fragments. Being internalized, these fragments interfere in the repair of chemically induced interstrand cross-links. In the current investigation, 756 bp polymerase chain reaction (PCR) product containing bulky photoreactive dC adduct was used as extracellular DNA.
View Article and Find Full Text PDFCancer Cell Int
May 2019
Background: We have characterized the human cell line arised from the Epstein-Barr virus (EBV) positive multiple myeloma aspirate subjected to the long-term cultivation. This cell line has acquired the ability to form free-floating spheres and to produce a xenograft upon transplantation into NOD/SCID mice.
Methods: Cells from both in vitro culture and developed xenografts were investigated with a number of analytical approaches, including pathomorphological analysis, FISH analysis, and analysis of the surface antigens and of the VDJ locus rearrangement.
Electron-microscopic analysis of the ultrastructure of the Krebs-2 carcinoma ascites cells in the first 90 min immediately after their exposure to fragmented double-stranded DNA has been performed. Morphological attributes of the treated cancer cells indicate the induction in these cells of destructive processes of presumably apoptotic type. The predominance of dystrophic-destructive changes in cells after the addition of DNA is supposed to be a consequence of the disturbance in metabolic processes caused by the experimental action.
View Article and Find Full Text PDFA functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties.
View Article and Find Full Text PDFKrebs-2 solid carcinoma was cured using a new "3+1" strategy for eradication of Krebs-2 tumor-initiating stem cells. This strategy was based on synchronization of these cells in a treatment-sensitive phase of the cell cycle. The synchronization mechanism, subsequent destruction of Krebs-2 tumor-initiating stem cells, and cure of mice from a solid graft were found to depend on the temporal profile of the interstrand cross-link repair cycle.
View Article and Find Full Text PDFPoorly differentiated cell populations including tumor-initiating stem cells have been demonstrated to display a unique ability to natively internalize fragmented double-stranded DNA. Using this feature as a marker, we show that 0.1% to 6% of human glioblastoma cells from the bioptates can effectively internalize a fluorescently labeled DNA probe.
View Article and Find Full Text PDFUsing the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
October 2016
Background: The most prominent features of cancer stem cells are asymmetric cell division, tumorigenicity, and clonogenicity. Recently one more feature of poorly differentiated cell types of various origin, including cancer stem cells, has been described. Namely, these cells can internalize extracellular DNA natively, without additional transfection procedures.
View Article and Find Full Text PDFBackground: We report on the results of a phase II clinical trial of Panagen (tablet form of fragmented human DNA preparation) in breast cancer patients (placebo group n = 23, Panagen n = 57). Panagen was administered as an adjuvant leukoprotective agent in FAC and AC chemotherapy regimens. Pre-clinical studies clearly indicate that Panagen acts by activating dendritic cells and induces the development of adaptive anticancer immune response.
View Article and Find Full Text PDFBackground: Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA.
Methods: The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells.
We describe the strategy, which allows curing experimental mice engrafted with Krebs-2 ascites. The strategy is based on the facts that i) Krebs-2 tumor-initiating stem cells (TISCs) are naturally capable of internalizing fragments of extracellular double-stranded DNA (dsDNA); ii) upon delivery into TISCs, these dsDNA fragments interfere with the on-going DNA repair process so that TISCs either die or lose their tumorigenic potential. The following 3-step regimen of therapeutic procedures leading to eradication of Krebs-2 ascites is considered.
View Article and Find Full Text PDFIn our earlier studies, we observed that when mice are treated with cyclophosphamide and fragmented exogenous dsDNA (18-30 h post cytostatic treatment), they develop a very characteristic set of symptoms and 80-90% of such animals succumb within 6-25 days. This was called "delayed death" phenomenon, and the gap between cyclophosphamide and DNA injections required for such phenotype to develop was termed "death window". We established that mice succumbed to multi-organ failure, which was caused by systemic inflammation and sepsis.
View Article and Find Full Text PDF