Publications by authors named "Ekaterina A Naumenko"

2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines.

View Article and Find Full Text PDF

Porous biopolymer hydrogels doped at 3-6 wt% with 50 nm diameter/0.8 μm long natural clay nanotubes were produced without any cross-linkers using the freeze-drying method. The enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite was demonstrated.

View Article and Find Full Text PDF

Fabrication of stimuli-triggered drug delivery vehicle s is an important milestone in treating cancer. Here we demonstrate the selective anticancer drug delivery into human cells with biocompatible 50-nm diameter halloysite nanotube carriers. Physically-adsorbed dextrin end stoppers secure the intercellular release of brilliant green.

View Article and Find Full Text PDF

Nanotechnology offers an unprecedented number of opportunities for biomedical research, utilizing the unusual functionalities of nanosized materials. Here we describe the recent advances in fabrication and utilization of nanoparticle-labelled cells. We present a brief overview of the most promising techniques, namely layer-by-layer polyelectrolyte assembly on cells and intracellular and extracellular labelling with magnetic nanoparticles.

View Article and Find Full Text PDF

We report the magnetically-facilitated scaffold-free assembly of lung tissue mimicking two-layered multicellular clusters. Polymer-stabilized magnetic nanoparticles were deposited on surfaces of viable human cells (A549 and skin fibroblasts), allowing the formation of two-layered porous tissue prototypes.

View Article and Find Full Text PDF