Bioplastics were developed to overcome environmental problems that are difficult to decompose in the environment. This study analyzes Thai cassava starch-based bioplastics' tensile strength, biodegradability, moisture absorption, and thermal stability. This study used Thai cassava starch and polyvinyl alcohol (PVA) as matrices, whereas Kepok banana bunch cellulose was employed as a filler.
View Article and Find Full Text PDFThe chemical modification of polymer nanofiber-based ammonia sensors by introducing dopants into the active layers has been proven as one of the low-cost routes to enhance their sensing performance. Herein, we investigate the influence of different citric acid (CA) concentrations on electrospun polyvinyl acetate (PVAc) nanofibers coated on quartz crystal microbalance (QCM) transducers as gravimetric ammonia sensors. The developed CA-doped PVAc nanofiber sensors are tested against various concentrations of ammonia vapors, in which their key sensing performance parameters (, sensitivity, limit of detection (LOD), limit of quantification (LOQ), and repeatability) are studied in detail.
View Article and Find Full Text PDF