Publications by authors named "Ejabul Mondal"

A series of novel functional carbazole (Cbz)-based carboxylated monomers were synthesized and characterized. A Clauson-Kaas procedure, a deprotection step, amide coupling, and hydrolysis were utilized as key chemical reactions towards the multistep synthesis of monomers in good to excellent isolated yields. The design strategy was further extended to complex carbazole-COOH monomers incorporated arylazo groups as photoreactive moieties.

View Article and Find Full Text PDF

Two new molecules, CzFCBI and CzFNBI, have been tailor-made to serve as bipolar host materials to realize high-efficiency electrophosphorescent devices. The molecular design is configured with carbazole as the hole-transporting block and N-phenylbenzimidazole as the electron-transporting block hybridized through the saturated bridge center (C9) and meta-conjugation site (C3) of fluorene, respectively. With structural topology tuning of the connecting manner between N-phenylbenzimidazole and the fluorene core, the resulting physical properties can be subtly modulated.

View Article and Find Full Text PDF

In this study, we synthesized and characterized a series of spirobifluorene-based bipolar compounds (D2 ACN, DNPACN, DNTACN, and DCzACN) in which a dicyano-substituted biphenyl branch, linked orthogonally to a donor biphenyl branch bearing various diarylamines, acted as an acceptor unit allowing fine-tuning of the morphological stability, triplet energy, bipolar transport behavior, and the HOMO and LUMO energy levels. The promising physical properties of these new compounds, together with their ability to transport electrons and holes with balanced mobilities, made them suitable for use as host materials in highly efficient phosphorescent organic light-emitting diodes (PhOLEDs) with green iridium-based- or red osmium-based phosphors as the emitting layer (EML). We adopted a multilayer structure to efficiently confine holes and electrons within the EML, thus preventing exciton diffusion and improving device efficiency.

View Article and Find Full Text PDF