Publications by authors named "Eizi Suzuki"

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the biogeographic affinities of tropical forests helps explain regional differences in their structure, diversity, and responses to global changes.
  • The study classifies the world's tropical forests into five main floristic regions based on their phylogenetic relationships: Indo-Pacific, Subtropical, African, American, and Dry forests.
  • Findings challenge the traditional division of tropical forests and suggest a connection between northern-hemisphere Subtropical forests in Asia and America, as well as the existence of a global dry forest region.
View Article and Find Full Text PDF

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e.

View Article and Find Full Text PDF

The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern.

View Article and Find Full Text PDF

Rattans are climbing, nonbranching palms with diverse growth forms ranging from stems that remain at the forest floor to stems that reach the canopy. We analyzed changes in architecture and biomass allocation during ontogenetic development of 13 Indonesian species in the genera Calamus, Ceratolobus, Daemonorops, Korthalsia, and Plectocomiopsis. Species included both nonclimbers (<5 m tall maximum) and climbers (10 to 50 m tall).

View Article and Find Full Text PDF

Whole-plant development trajectories and sapling leaf displays were compared for two sympatric congeneric species, Pterospermum diversifolium and P. javanicum, in a tropical floodplain forest in East Kalimantan, Indonesia. We assessed their growth strategies and developed hypotheses for their coexistence within the community.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionb2oab5vojcg6319vpsakc66ctt6aqemm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once