A fundamental task of a sensory system is to infer information about the environment. It has long been suggested that an important goal of the first stage of this process is to encode the raw sensory signal efficiently by reducing its redundancy in the neural representation. Some redundancy, however, would be expected because it can provide robustness to noise inherent in the system.
View Article and Find Full Text PDFSensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent with human perception, but they have not been compared directly with neural responses. Here, we analyze the information that retinal ganglion cells transmit to the brain about the spatial information in natural images subject to three resource constraints: the number of retinal ganglion cells, their total response variances, and their total synaptic strengths.
View Article and Find Full Text PDFNeural Comput
October 2011
Robust coding has been proposed as a solution to the problem of minimizing decoding error in the presence of neural noise. Many real-world problems, however, have degradation in the input signal, not just in neural representations. This generalized problem is more relevant to biological sensory coding where internal noise arises from limited neural precision and external noise from distortion of sensory signal such as blurring and phototransduction noise.
View Article and Find Full Text PDFTo achieve color vision, the brain has to process signals of the cones in the retinal photoreceptor mosaic in a cone-type-specific way. We investigated the possibility that cone-type-specific wiring is an adaptation to the statistics of the cone signals. We analyzed estimates of cone responses to natural scenes and found that there is sufficient information in the higher order statistics of L- and M-cone responses to distinguish between cones of different types, enabling unsupervised learning of cone-type specificity.
View Article and Find Full Text PDFWe address the problem of robust coding in which the signal information should be preserved in spite of intrinsic noise in the representation. We present a theoretical analysis for 1- and 2-D cases and characterize the optimal linear encoder and decoder in the mean-squared error sense. Our analysis allows for an arbitrary number of coding units, thus including both under- and over-complete representations, and provides insights into optimal coding strategies.
View Article and Find Full Text PDFNeurons in the early stages of processing in the primate visual system efficiently encode natural scenes. In previous studies of the chromatic properties of natural images, the inputs were sampled on a regular array, with complete color information at every location. However, in the retina cone photoreceptors with different spectral sensitivities are arranged in a mosaic.
View Article and Find Full Text PDF