Publications by authors named "Eivind Wang"

Improving peak oxygen uptake (V̇O) and maximal strength are key objectives of rehabilitation for patients with unspecific musculoskeletal disorders (MSDs). Although high-intensity training yield superior outcomes for these factors, patients with MSDs may not tolerate high-intensity due to pain and fear. Therefore, we examined the effect and feasibility of incorporating aerobic high-intensity intervals (HIITs) and maximal strength training (MST) in a standard clinical rehabilitation program for patients with unspecific MSDs.

View Article and Find Full Text PDF

Background: Patients with schizophrenia suffer from physical health conditions, culminating in reduced physical functioning with enormous costs for patients and society. Although aerobic endurance and skeletal muscle strength, typically reduced in this population, relate to cognition and function, no study has explored their respective contributions to performance of functional skills and everyday tasks.

Methods: In a cross-sectional study, 48 outpatients (28/20 men/women; 35 ± 11(SD) years) with schizophrenia spectrum disorders (ICD-10; F20-25) were administered the UCSD Performance-based Skills Assessment-Brief (UPSA-B; functional skills), Specific Level of Functioning (SLOF; functional performance) and the Positive and Negative Syndrome (PANSS) scale.

View Article and Find Full Text PDF

Objective: Protein-energy malnutrition and the subsequent muscle wasting (sarcopenia) are common ageing complications. It is knowing to be also associated with dementia. Our programme will test the cytoprotective functions of vitamin E combined with the cortisol-lowering effect of chocolate polyphenols (PP), in combination with muscle anabolic effect of adequate dietary protein intake and physical exercise to prevent the age-dependent decline of muscle mass and its key underpinning mechanisms including mitochondrial function, and nutrient metabolism in muscle in the elderly.

View Article and Find Full Text PDF

The existence of spot reduction, exercise-induced local body fat reduction, has been debated for half a century. Although the evidence is equivocal, no study has applied aerobic endurance training closely matching interventions for energy expenditure. Sixteen overweight (BMI: 29.

View Article and Find Full Text PDF

Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature.

View Article and Find Full Text PDF

Introduction: Skeletal muscle strength is reduced in patients with schizophrenia, contributing to their impaired physical health, functional performance, and potentially mental health challenges. Although short-term training programs have shown promising results, improving muscle strength and functional performance, it is unknown how exercise can be successfully integrated into the long-term clinical care of outpatients with schizophrenia.

Objective: To investigate effects of strength training with adherence support in a collaborative care model.

View Article and Find Full Text PDF

Introduction: Maximal oxygen uptake (V̇O ) is a pivotal factor for aerobic endurance performance. Recently, aerobic high-intensity interval training (HIIT) was documented to be superior to sprint interval training (SIT) in improving V̇O in well-trained males. However, as mounting evidence suggests that physiological responses to training are sex-dependent, examining the effects of HIIT versus SIT on V̇O , anaerobic capacity, and endurance performance in females is warranted.

View Article and Find Full Text PDF

Prolonged moderate-intensity exercise leads to a progressive upward drift in heart rate (HR) that may compromise stroke volume (SV). Alternatively, the HR drift may be related to abated SV due to impaired ventricular function. The aim of this study was to examine the effects of cardiovascular drift on left ventricular volumes and in turn SV.

View Article and Find Full Text PDF

Maximal oxygen uptake and exercise performance typically decline with age. However, there are indications of preserved vascular function and blood flow regulation during arm exercise. Yet, it is unknown if this potential physiological preservation with age is mirrored in peripheral metabolic capacity and V̇o/W ratio.

View Article and Find Full Text PDF

Neural factors play a critical role in the age-related decline in maximal strength and rate of force development (RFD). However, it is uncertain how the age-related attenuation in neuromuscular function may be mitigated in strength or endurance trained master athletes. In this study we applied evoked spinal motoneuron recordings to examine descending motor drive, i.

View Article and Find Full Text PDF

Maximal oxygen uptake (V̇O ) may be the single most important factor for long-distance running performance. Interval training, enabling high intensity, is forwarded as the format that yields the largest increase in V̇O . However, it is uncertain if an optimal outcome on V̇O , anaerobic capacity, and running performance is provided by training with a high aerobic intensity or high overall intensity.

View Article and Find Full Text PDF

The age-related attenuation in neuromuscular function can be mitigated with strength training. Current recommendations for untrained and elderly recommend performing the strength training with a controlled movement velocity (CON). However, applying maximal intended velocity (MIV) in the concentric phase of movement may augment neuromuscular stimulation and potentially enhance training adaptations.

View Article and Find Full Text PDF

Background: Individuals with severe mental disorders (SMDs; schizophrenia spectrum disorders, bipolar disorder, and major depressive disorder) are not only suffering from their mental conditions; they also have an attenuated physical health, augmenting their overall critical condition.

Objectives: We review and critically appraise the evidence based on (1) key physiological factors relating to aerobic endurance and skeletal muscle strength; (2) implications for physical function and health; and (3) effects of training interventions with different intensities evaluated in individuals with SMDs.

Findings: Reductions in aerobic endurance factors, peak oxygen uptake (VO) and walking work efficiency, are paralleled by reductions in maximal skeletal muscle strength and power.

View Article and Find Full Text PDF

Context: Exercise is recognized as an important strategy to prevent bone loss, but its acute effects on bone turnover markers (BTMs) and related markers remain uncertain.

Objective: To assess the acute effects of two different exercise modes on BTMs and related markers in young adults of both sexes and elderly men.

Design Setting Participants: This was a three-group crossover within-subjects design study with a total of 53 participants-19 young women (aged 22-30), 20 young men (aged 21-30 years), and 14 elderly men (aged 63-74 years)-performing two different exercise sessions [strength training (ST) and high-intensity interval training (HIIT)] separated by 2 weeks, in a supervised laboratory setting.

View Article and Find Full Text PDF

Purpose: Patients with inflammatory rheumatic disease (IRD) have attenuated muscle strength in the lower extremities, resulting in impaired physical function and quality of life. Although maximal strength training (MST), applying heavy resistance, is documented to be a potent countermeasure for such attenuation, it is uncertain if it is feasible in IRD given the pain, stiffness, and joint swelling that characterize the population.

Methods: 23 patients with IRD (49 ± 13 years; 20 females/3 males), diagnosed with spondyloarthritis, rheumatoid arthritis, or systemic lupus erythematosus, were randomized to MST or a control group (CG).

View Article and Find Full Text PDF

Background: Patients with inflammatory rheumatic diseases (IRDs) experience disease-related barriers to physical training. Compared with the general population, IRD patients are reported to have reduced maximal oxygen uptake (VO) and physical activity levels. Supervised high-intensity interval training (HIIT) is documented to counteract the reduced VO and poor cardiovascular health associated with IRDs.

View Article and Find Full Text PDF

Introduction: Maximal strength training (MST), performed with heavy loads (~ 90% of one repetition maximum; 1RM) and few repetitions, yields large improvements in efferent neural drive, skeletal muscle force production, and skeletal muscle efficiency. However, it is elusive whether neural adaptations following such high intensity strength training may be accompanied by alterations in energy-demanding muscular factors.

Methods: Sixteen healthy young males (24 ± 4 years) were randomized to MST 3 times per week for 8 weeks (n = 8), or a control group (CG; n = 8).

View Article and Find Full Text PDF

Introduction: Hip fractures predominantly occur in the geriatric population and results in increased physical inactivity and reduced independency, largely influenced by a downward spiral of ambulatory capacity, related to loss of skeletal muscle strength and postural stability. Thus, effective postoperative treatment, targeting improvements in muscle strength, is sought after.

Materials & Methods: Twenty-one hip fracture patients (>65 yr) were randomized to 8 weeks of either conventional physiotherapy control group (CG), or leg press and hip abduction maximal strength training (MST) 3 times per week.

View Article and Find Full Text PDF

Purpose: The present study aimed to investigate the potential impact of age, gender, baseline strength, and selected candidate polymorphisms on maximal strength training (MST) adaptations.

Methods: A total of 49 subjects (22 men and 27 women) aged 20-76 years, divided into five age groups, completed an 8 weeks MST intervention. Each MST session consisted of 4 sets with 4 repetitions at ∼85-90% of one-repetition maximum (1RM) intensity in leg-press, three times per week.

View Article and Find Full Text PDF

Patients with schizophrenia spectrum disorders have impaired skeletal muscle force-generating capacity (FGC) of the lower extremities, that is, one repetition maximum (1RM) and rapid force development, and poor functional performance. We therefore investigated whether 12 weeks of maximal strength training (MST) could (a) restore FGC and functional performance to the level of healthy references, (b) increase patient activation and quality of life, and (c) explore associations between symptom severity, defined daily dose of medication, illness duration, level of patient activation, and improvements in FGC and functional performance. Forty-eight outpatients were randomized to a training group (TG) or control group (CG).

View Article and Find Full Text PDF

Although aerobic interval training (AIT) is recognized to attenuate the risk of cardiovascular disease (CVD) and premature mortality, it appears that it rarely arrives at patients' doorsteps. Thus, this study investigated 1-year effects and feasibility of AIT delivered with adherence support in collaborative care of outpatients with schizophrenia. Forty-eight outpatients (28 men, 35 [31-38] (mean [95% confidence intervals]) years; 20 women, 36 [30-41] years) with schizophrenia spectrum disorders (ICD-10) were randomized to either a collaborative care group provided with municipal transportation service and training supervision (walking/running 4 × 4 minutes at ~90% of peak heart rate; HR ) 2 d wk at the clinic (TG) or a control group (CG) given 2 introductory AIT sessions and advised to continue training.

View Article and Find Full Text PDF

Strength training performed with heavy loads and maximal intended velocity is documented to enhance efferent neural drive to maximally contracting musculature in older adults. However, it remains unclear whether the neural plasticity following training result from motor skill learning or if external resistance is a prerequisite. To investigate this, we assessed electrically evoked potentials (H-reflex and V-waves normalized to maximal M-wave) and voluntary activation (VA) in 36 older adults (73 ± 4 years) randomized to 3 weeks of plantar flexion strength training, with (maximal strength training [MST]) or without (unloaded ballistic training [UBT]) heavy external loading (90% of one repetition maximum), or a control group.

View Article and Find Full Text PDF

Maximal strength training (MST) results in robust improvements in skeletal muscle force production, efficiency, and mass. However, the effects of MST on muscle mitochondria are still unknown. Accordingly, the purpose of this study was to examine, from the molecular level to whole-muscle, mitochondrial adaptations induced by 8 weeks of knee-extension MST in the quadriceps of 10 older adults using immunoblotting, spectrophotometry, high-resolution respirometry in permeabilized muscle fibers, in vivo 31P magnetic resonance spectroscopy (31P-MRS), and gas exchange.

View Article and Find Full Text PDF

Background And Purpose: Adjuvant breast cancer therapy may reduce maximal muscle strength, muscle mass, and functional performance. Although maximal strength training (MST) has the potential to counteract this debilitating outcome and is shown to be superior to low- and moderate-intensity strength training, it is unknown if it can elicit effective adaptations in patients suffering treatment-induced adverse side effects.

Methods: Fifty-five newly diagnosed stage I to III breast cancer patients (49 ± 7 yr) scheduled for adjuvant therapy were randomized to MST or a control group.

View Article and Find Full Text PDF

Based on the strong linear relationship between heart rate (HR) and oxygen consumption, the Åstrand-Ryhming cycle ergometer test (Astrand and Ryhming in J Appl Physiol 7:218-221, 1954) is a widely used submaximal test to predict whole body maximal oxygen consumption ([Formula: see text]). However, a similar test predicting peak oxygen consumption ([Formula: see text]) in the upper extremities is not established, and may be very useful for individuals unable to use their lower extremities or/and if separation of upper extremity aerobic capacity is sought after. Thus, the aim of the current study was to develop a submaximal test predicting [Formula: see text] in arm-cycling.

View Article and Find Full Text PDF