Publications by authors named "Eitan Moses"

Mutations in genes involved in DNA damage repair (DDR) often lead to premature aging syndromes. While recent evidence suggests that inflammation, alongside mutation accumulation and cell death, may drive disease phenotypes, its precise contribution to pathophysiology remains unclear. Here, by modeling Ataxia Telangiectasia (A-T) and Bloom Syndrome in the African turquoise killifish ( ), we replicate key phenotypes of DDR syndromes, including infertility, cytoplasmic DNA fragments, and reduced lifespan.

View Article and Find Full Text PDF

Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate.

View Article and Find Full Text PDF

Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains.

View Article and Find Full Text PDF

Classical evolutionary theories propose tradeoffs among reproduction, damage repair and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. In this study, we used the turquoise killifish (Nothobranchius furzeri) to genetically arrest germline development at discrete stages and examine how different modes of infertility impact life history.

View Article and Find Full Text PDF

Classical evolutionary theories propose tradeoffs between reproduction, damage repair, and lifespan. However, the specific role of the germline in shaping vertebrate aging remains largely unknown. Here, we use the turquoise killifish ( ) to genetically arrest germline development at discrete stages, and examine how different modes of infertility impact life-history.

View Article and Find Full Text PDF

Pituitary hormones play a central role in shaping vertebrate life history events, including growth, reproduction, metabolism, and aging. The regulation of these traits often requires precise control of hormone levels across diverse timescales. However, fine tuning circulating hormones in-vivo has traditionally been experimentally challenging.

View Article and Find Full Text PDF

The African turquoise killifish has recently gained interest as an emerging vertebrate model system for the study of aging, owing to its naturally short life span and generation time. Here, we provide a step-by-step guide for effective genome engineering using the CRISPR-Cas9 system to generate loss-of-function (i.e.

View Article and Find Full Text PDF